Two-state model of antiaromaticity: The low lying singlet states

被引:50
作者
Zilberg, S
Haas, Y [1 ]
机构
[1] Hebrew Univ Jerusalem, Dept Phys Chem, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Farkas Ctr Light Induced Proc, IL-91904 Jerusalem, Israel
关键词
D O I
10.1021/jp9831029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aromatic and antiaromatic compounds are resonance hybrids of two cyclic covalent Kekule structures. In both, two combinations can be formed, an in-phase and an out-of-phase one. In aromatic compounds having an odd number of conjugated double bonds, the in-phase combination is the ground state and the out-of-phase one is an excited state. In antiaromatic compounds, having an even number of conjugated electron pairs, the situation is reversed; the ground state is formed by the out-of-phase combination. This causes the ground state of these molecules to be a non-totally symmetric one, which in turn means that it has a biradical character. Moreover, the out-of-phase combination is necessarily unstable, being a transition state between the two bond-alternating Kekule structures. By comparison to noncyclic biradicals such as perpendicular olefins, the antiaromatic cyclic structures are strongly stabilized, reducing the activation barrier from around 50-60 kcal/mol to around 3-5 kcal/mol. Therefore, the bond-alternating structures are easily interconverted at ambient temperatures and in the process acquire biradical character, making them highly reactive and difficult to synthesize. The in-phase combination of the two Kekule structures is a strongly stabilized totally symmetric excited state which has a similar geometry to that of the ground transition state.
引用
收藏
页码:10843 / 10850
页数:8
相关论文
共 60 条