On lowest density MDS codes

被引:156
作者
Blaum, M [1 ]
Roth, RM
机构
[1] IBM Corp, Almaden Res Ctr, Div Res, San Jose, CA 95120 USA
[2] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
关键词
disk arrays; group codes; low-density codes; MDS codes; sparse matrices;
D O I
10.1109/18.746771
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let F-q denote the finite field GF(q) and let b be a positive integer, MDS codes over the symbol alphabet F-q(b) are considered that are linear over F-q and have sparse ("low-density") parity-check and generator matrices over F-q that are systematic over F-q(b). Lower bounds are presented an the number of nonzero elements in any systematic parity-check or generator matrix: of an F-q-linear MDS code over F-q(b), along with upper bounds on the length of any MDS code that attains those lower bounds. A construction is presented that achieves those bounds for certain redundancy values. The building block of the construction is a set of sparse nonsingular matrices over F-q whose pairwise differences are also nonsingular. Bounds and constructions are presented also for the case where the systematic condition on the parity-check and generator matrices is relaxed to be over F-q, rather than over F-q(b).
引用
收藏
页码:46 / 59
页数:14
相关论文
共 13 条
[1]  
AITSEV GV, 1983, PROBL INFORM TRANSM, V19, P197
[2]  
Blake I.F., 1976, INTRO ALGEBRAIC COMB
[3]   EVENODD - AN EFFICIENT SCHEME FOR TOLERATING DOUBLE-DISK FAILURES IN RAID ARCHITECTURES [J].
BLAUM, M ;
BRADY, J ;
BRUCK, J ;
MENON, J .
IEEE TRANSACTIONS ON COMPUTERS, 1995, 44 (02) :192-202
[4]   NEW ARRAY CODES FOR MULTIPLE PHASED BURST CORRECTION [J].
BLAUM, M ;
ROTH, RM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (01) :66-77
[5]   MDS array codes with independent parity symbols [J].
Blaum, M ;
Bruck, J ;
Vardy, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (02) :529-542
[6]   ON THE HAMMING DISTANCE PROPERTIES OF GROUP CODES [J].
FORNEY, GD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (06) :1797-1801
[7]  
Gibson G.A., 1992, REDUNDANT DISK ARRAY
[8]   DISTRIBUTION OF IRREDUCIBLES IN GF[Q,X] [J].
HAYES, DR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 117 (05) :101-&
[9]  
Ireland K., 1972, CLASSICAL INTRO MODE
[10]  
Lidl R., 1997, Finite Fields