Scatter Correction in Cone Beam CT for Metal Additive Manufacturing Components

被引:5
|
作者
Xia, Xiaoqin [1 ]
Hu, Xiaodong [1 ]
Han, Zhenye [1 ]
Zhang, Dong [1 ]
Xu, Ying [2 ]
Zou, Jing [1 ,3 ]
机构
[1] Tianjin Univ, State Key Lab Precis Measuring Technol & Instrume, Tianjin 300072, Peoples R China
[2] Guangdong Univ Technol, Sch Electromech Engn, Guangzhou 510006, Guangdong, Peoples R China
[3] BCMIIS, Beijing 100089, Peoples R China
基金
中国国家自然科学基金;
关键词
MONTE-CARLO; ANTISCATTER GRIDS; POROSITY; GEANT4;
D O I
10.1007/s11837-018-3253-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper provides an x-ray scatter correction method for cone beam computed tomography (CT) to reduce cupping artifacts and image inhomogeneity of metal additive manufacturing (AM) components. Firstly, projections in 360 degrees were obtained by a cone beam CT system. Secondly, the corresponding virtual CT system was built on Geant4 to obtain scatter photons. Different from previous studies, the geometry of the metal AM component was set by importing a CAD model of the component into Geant4, which can not only assure the accuracy of geometry but also simplify the definition of the geometry. Finally, the corresponding scatter photons were subtracted from the experimental projections in 360 degrees to obtain corrected projections. Corrected reconstruction images were acquired via an FDK algorithm. In the corrected images, the average sum of squares of deviation of regions of interest was about 79.5% of that in the uncorrected images. Corrected images showed that cupping-shaped artifacts and image inhomogeneity were effectively reduced.
引用
收藏
页码:1082 / 1087
页数:6
相关论文
共 50 条
  • [1] Scatter Correction in Cone Beam CT for Metal Additive Manufacturing Components
    Xiaoqin Xia
    Xiaodong Hu
    Zhenye Han
    Dong Zhang
    Ying Xu
    Jing Zou
    JOM, 2019, 71 : 1082 - 1087
  • [2] Correction of scatter in megavoltage cone-beam CT
    Spies, L
    Ebert, M
    Groh, BA
    Hesse, BM
    Bortfeld, T
    PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (03): : 821 - 833
  • [3] A PRACTICAL METHOD FOR SCATTER CORRECTION IN CONE BEAM CT
    Ploeger, L.
    Sonke, J. J.
    van Herk, M.
    RADIOTHERAPY AND ONCOLOGY, 2009, 92 : S129 - S129
  • [4] Scatter Correction for Cone-Beam CT in Radiation Therapy
    Zhu, L.
    Xing, L.
    MEDICAL PHYSICS, 2008, 35 (06)
  • [5] Correction of veiling glare and scatter in cone-beam CT
    Baba, R
    Ueda, K
    Takagi, H
    RADIOLOGY, 1999, 213P : 453 - 453
  • [6] A Hybrid Scatter Correction Method for Cone-Beam CT
    Zhang, Feng
    Yan, Bin
    Li, Jianxin
    Li, Lei
    Jia, Pengxiang
    Hu, Guoen
    2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2010), VOLS 1-7, 2010, : 23 - 27
  • [7] Noise suppression in scatter correction for cone-beam CT
    Zhu, Lei
    Wang, Jing
    Xing, Lei
    MEDICAL PHYSICS, 2009, 36 (03) : 741 - 752
  • [8] Scatter correction for cone-beam CT in radiation therapy
    Zhu, Lei
    Xie, Yaoqin
    Wang, Jing
    Xing, Lei
    MEDICAL PHYSICS, 2009, 36 (06) : 2258 - 2268
  • [9] Noise Suppression in Scatter Correction for Cone-Beam CT
    Xing, L.
    Wang, J.
    Zhu, L.
    MEDICAL PHYSICS, 2009, 36 (06)
  • [10] Scatter Correction Method for Cone Beam CT Using Beam Attenuation Grid
    Xie, Shipeng
    Luo, Limin
    Yang, Lifeng
    Zhang, Feng
    MATERIALS ENGINEERING FOR ADVANCED TECHNOLOGIES, PTS 1 AND 2, 2011, 480-481 : 341 - +