A two-stage approach for the spatio-temporal analysis of high-throughput phenotyping data

被引:21
作者
Perez-Valencia, Diana M. [1 ,2 ]
Xose Rodriguez-Alvarez, Maria [1 ,3 ,7 ]
Boer, Martin P. [4 ]
Kronenberg, Lukas [5 ,6 ]
Hund, Andreas [5 ]
Cabrera-Bosquet, Llorenc [8 ]
Millet, Emilie J. [4 ,8 ]
van Eeuwijk, Fred A. [4 ]
机构
[1] BCAM Basque Ctr Appl Math, Mazarredo 14, Bilbao 48009, Spain
[2] Univ Basque Country, UPV EHU, Dept Matemat, Leioa 48940, Spain
[3] Basque Fdn Sci, Ikerbasque, Bilbao 48009, Spain
[4] Wageningen Univ & Res, Biometris, NL-6708 PB Wageningen, Netherlands
[5] Swiss Fed Inst Technol, Inst Agr Sci, Crop Sci, CH-8092 Zurich, Switzerland
[6] Swiss Fed Inst Technol, Inst Agr Sci, Mol Plant Breeding, CH-8092 Zurich, Switzerland
[7] Univ Vigo, Dept Stat & Operat Res, Vigo 36310, Spain
[8] Univ Montpellier, Inst Agro, INRAE, LEPSE, F-34060 Montpellier, France
基金
欧盟地平线“2020”;
关键词
FIELD EXPERIMENTS; MODELS; SPLINES;
D O I
10.1038/s41598-022-06935-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High throughput phenotyping (HTP) platforms and devices are increasingly used for the characterization of growth and developmental processes for large sets of plant genotypes. Such HTP data require challenging statistical analyses in which longitudinal genetic signals need to be estimated against a background of spatio-temporal noise processes. We propose a two-stage approach for the analysis of such longitudinal HTP data. In a first stage, we correct for design features and spatial trends per time point. In a second stage, we focus on the longitudinal modelling of the spatially corrected data, thereby taking advantage of shared longitudinal features between genotypes and plants within genotypes. We propose a flexible hierarchical three-level P-spline growth curve model, with plants/plots nested in genotypes, and genotypes nested in populations. For selection of genotypes in a plant breeding context, we show how to extract new phenotypes, like growth rates, from the estimated genotypic growth curves and their first-order derivatives. We illustrate our approach on HTP data from the PhenoArch greenhouse platform at INRAE Montpellier and the outdoor Field Phenotyping platform at ETH Zurich.
引用
收藏
页数:16
相关论文
共 50 条
[31]   Double Frontier Two-Stage Fuzzy Data Envelopment Analysis [J].
Amirteimoori, Alireza ;
Azizi, Hossein ;
Kordrostami, Sohrab .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2020, 28 (01) :117-152
[32]   Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform [J].
Asaari, Mohd Shahrimie Mohd ;
Mertens, Stien ;
Dhondt, Stijn ;
Inze, Dirk ;
Wuyts, Nathalie ;
Scheunders, Paul .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 162 :749-758
[33]   High-Throughput Phenotyping Approach for Screening Major Carotenoids of Tomato by Handheld Raman Spectroscopy Using Chemometric Methods [J].
Akpolat, Hacer ;
Barineau, Mark ;
Jackson, Keith A. ;
Akpolat, Mehmet Z. ;
Francis, David M. ;
Chen, Yu-Ju ;
Rodriguez-Saona, Luis E. .
SENSORS, 2020, 20 (13) :1-13
[34]   Investigating the research and development performance of Chinese industry: A two-stage prospect data envelopment analysis approach [J].
Yang, Guo-liang ;
Liu, Hui-hui ;
Gao, Jian-wei ;
Wang, Ya-ping ;
Ni, Guo-hua .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2025, 323 (03) :1040-1059
[35]   Spatio-Temporal Correlation Analysis of Air Quality in China: Evidence from Provincial Capitals Data [J].
Liu, Qingchen ;
Li, Xinyi ;
Liu, Tao ;
Zhao, Xiaojun .
SUSTAINABILITY, 2020, 12 (06)
[36]   Efficiency analysis in two-stage structures using fuzzy data envelopment analysis [J].
Hatami-Marbini, Adel ;
Saati, Saber ;
Sajadi, Seyed Mojtaba .
CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2018, 26 (04) :909-932
[37]   A Bayesian random regression method using mixture priors for genome-enabled analysis of time-series high-throughput phenotyping data [J].
Qu, Jiayi ;
Morota, Gota ;
Cheng, Hao .
PLANT GENOME, 2022, 15 (03)
[38]   Correcting for Unreliability and Partial Invariance: A Two-Stage Path Analysis Approach [J].
Lai, Mark H. C. ;
Tse, Winnie Wing-Yee ;
Zhang, Gengrui ;
Li, Yixiao ;
Hsiao, Yu-Yu .
STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2023, 30 (02) :258-271
[39]   A two-stage realized volatility approach to estimation of diffusion processes with discrete data [J].
Phillips, Peter C. B. ;
Yu, Jun .
JOURNAL OF ECONOMETRICS, 2009, 150 (02) :139-150
[40]   Absorbance summation: A novel approach for analyzing high-throughput ELISA data in the absence of a standard [J].
Hartman, Holly ;
Wang, Yuge ;
Schroeder, Harry W., Jr. ;
Cui, Xiangqin .
PLOS ONE, 2018, 13 (06)