Defining belief functions using mathematical morphology - Application to image fusion under imprecision

被引:37
作者
Bloch, Isabelle [1 ]
机构
[1] Ecole Natl Super Telecommun Bretagne, GET Telecom Paris, CNRS, UMR 5141,LTCI,Signal & Image Proc Dept, F-75013 Paris, France
关键词
mathematical morphology; dilation; erosion; belief functions; Dempster-Shafer theory; image fusion; spatial imprecision; fuzzy sets;
D O I
10.1016/j.ijar.2007.07.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address in this paper the problem of defining belief functions, typically for multi-source classification applications in image processing. We propose to use mathematical morphology for introducing imprecision in the mass and belief functions while estimating disjunctions of hypotheses. The basic idea relies on the similarity between some properties of morphological operators and properties of belief functions. The framework of mathematical morphology guarantees that the derived functions have all required properties. We illustrate the proposed approach on synthetic and real images. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:437 / 465
页数:29
相关论文
共 52 条
[1]  
ANDRESS KM, 1988, AI MAG, P75
[2]  
[Anonymous], UNCERTAINTY ANAL ENG
[3]  
[Anonymous], FUZZY TECHNIQUES IMA
[4]  
APPRIOU A, 1993, QUATORZIEME C GRETSI, P951
[5]  
BALDWIN JF, 1992, FUZZY LOGIC MANAGEME, P353
[6]  
Barnett J.A., 1981, P 7 INT JOINT C ART, P868
[7]   Multisensor image segmentation using Dempster-Shafer fusion in Markov fields context [J].
Bendjebbour, A ;
Delignon, Y ;
Fouque, L ;
Samson, V ;
Pieczynski, W .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (08) :1789-1798
[8]   FUZZY MATHEMATICAL MORPHOLOGIES - A COMPARATIVE-STUDY [J].
BLOCH, I ;
MAITRE, H .
PATTERN RECOGNITION, 1995, 28 (09) :1341-1387
[9]   Some aspects of Dempster-Shafer evidence theory for classification of multi-modality medical images taking partial volume effect into account [J].
Bloch, I .
PATTERN RECOGNITION LETTERS, 1996, 17 (08) :905-919
[10]  
BLOCH I, 2005, LNCS, V3849, P354