Mineral reaction buffering of Venus' atmosphere: A thermochemical constraint and implications for Venus-like planets

被引:14
|
作者
Treiman, Allan H. [1 ]
Bullock, Mark A. [2 ]
机构
[1] Lunar & Planetary Inst, Houston, TX 77058 USA
[2] SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA
基金
美国国家科学基金会;
关键词
Venus; Atmosphere; Surface; Atmospheres; Chemistry; Extrasolar planets; SUPER-EARTH; CLIMATE; SURFACE; EVOLUTION; DIOXIDE; PHASES; MASS;
D O I
10.1016/j.icarus.2011.08.019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The equilibrium suggested as a buffer for CO2 in the Venus atmosphere, CaCO3 + SiO2 = CaSiO3 + CO2, cannot act as a buffer at the Venus surface/troposphere - the pressure-temperature slope of the equilibrium and that of the atmosphere (dry adiabat with significant greenhouse heating) do not provide buffering capacity (if indeed CaCO3 were present). Instead, perturbations to T or P(CO2) can produce catastrophic expansion or collapse of the atmosphere. This instability can be generalized to all devolatilization reactions that produce a radiatively active gas in a planetary atmosphere dominated by such gases, and gives a simple thermochemical criterion for whether a reaction could buffer such an atmosphere. Simple decarbonation reactions fail this criterion, suggesting that the abundance of CO2 in a CO2-dominated atmosphere cannot be buffered by chemical reactions with the surface; a similar conclusion holds for the abundance of H2O in an H2O-dominated (steam) atmosphere. Buffering of minor gases is more likely; a mineral buffer equilibrium for SO2 proposed for Venus, FeS2 + CO2 = Fe3O4 + SO2 + CO, passes the thermochemical criterion, as does a reaction involving Ca sulfate. These inferences can be generalized to atmospheres in 'moist' adiabatic equilibria, and to extrasolar Venus-like planets, and will help in interpreting the compositions of their atmospheres. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:534 / 541
页数:8
相关论文
共 16 条
  • [1] Photochemistry of Venus-like Planets Orbiting K- and M-dwarf Stars
    Jordan, Sean
    Rimmer, Paul B.
    Shorttle, Oliver
    Constantinou, Tereza
    ASTROPHYSICAL JOURNAL, 2021, 922 (01)
  • [2] Coupling the atmosphere with interior dynamics: Implications for the resurfacing of Venus
    Noack, L.
    Breuer, D.
    Spohn, T.
    ICARUS, 2012, 217 (02) : 484 - 498
  • [3] ATMOSPHERIC CHEMISTRY OF VENUS-LIKE EXOPLANETS
    Schaefer, Laura
    Fegley, Bruce, Jr.
    ASTROPHYSICAL JOURNAL, 2011, 729 (01)
  • [4] Polarimetric properties of Mercury-like and Venus-like exoplanets
    Qu, Z. Q.
    Sun, J.
    Song, W.
    Yan, X. L.
    PLANETARY AND SPACE SCIENCE, 2013, 78 : 33 - 37
  • [5] Exosphere Modeling of Proxima b: A Case Study of Photochemical Escape with a Venus-like Atmosphere
    Lee, Yuni
    Dong, Chuanfei
    Tenishev, Valeriy
    ASTROPHYSICAL JOURNAL, 2021, 923 (02)
  • [6] Mantle avalanches in a Venus-like stagnant lid planet
    Kerr, Madeleine C.
    Stegman, Dave R.
    EARTH AND PLANETARY PHYSICS, 2024, 8 (05) : 686 - 702
  • [7] Venusian Habitable Climate Scenarios: Modeling Venus Through Time and Applications to Slowly Rotating Venus-Like Exoplanets
    Way, M. J.
    Del Genio, Anthony D.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2020, 125 (05)
  • [8] Photochemical and thermochemical pathways to S2 and polysulfur formation in the atmosphere of Venus
    Frances-Monerris, Antonio
    Carmona-Garcia, Javier
    Trabelsi, Tarek
    Saiz-Lopez, Alfonso
    Lyons, James R.
    Francisco, Joseph S.
    Roca-Sanjuan, Daniel
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [9] Sprite discharges on Venus and Jupiter-like planets: A laboratory investigation
    Dubrovin, D.
    Nijdam, S.
    van Veldhuizen, E. M.
    Ebert, U.
    Yair, Y.
    Price, C.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
  • [10] Line list of HD16O for study of atmosphere of terrestrial planets (Earth, Venus and Mars)
    Lavrentieva, N. N.
    Voronin, B. A.
    Naumenko, O. V.
    Bykov, A. D.
    Fedorova, A. A.
    ICARUS, 2014, 236 : 38 - 47