Robust multi-source adaptation visual classification using supervised low-rank representation

被引:26
|
作者
Tao, JianWen [1 ]
Song, Dawei [2 ]
Wen, Shiting [1 ]
Hu, Wenjun [3 ]
机构
[1] Zhejiang Univ, Ningbo Inst Technol, Sch Informat Sci & Engn, Ningbo 315100, Zhejiang, Peoples R China
[2] Open Univ, Dept Comp, Milton Keynes, Bucks, England
[3] Huzhou Teachers Coll, Sch Informat & Engn, Huzhou 313000, Peoples R China
基金
国家教育部科学基金资助;
关键词
Multiple source domain adaptation; Transfer learning; Supervised low rank representation; Visual classification; REGULARIZATION; ALGORITHM; GRAPH;
D O I
10.1016/j.patcog.2016.07.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
How to guarantee the robustness of multi-source adaptation visual classification is an important challenge in current visual learning community. To this end, we address in this paper the problem of robust visual classification with few labeled samples from the target domain of interest by leveraging multiple prior source models. Motivated by the recent success of low rank representation, we formulate this problem as a robust multi-source adaptation visual classification (RMAVC) model with supervised low rank representation by combining the strength of discriminative information from the target domain and the prior models from multiple source domains. Specifically, we propose a joint supervised low rank representation and multi-source adaptation visual classification framework, which achieves dual goals of finding the most discriminative low rank representation and multi-source adaptation classifier parameters for the target domain. While it is showed in this paper that the proposed RMAVC framework is effective and can produce high accuracy on several tasks of multi-source adaptation visual classification, this framework fails to consider the local geometrical structure of the target data and the heterogeneousness among multiple source domains. Hence, under this framework, we further present two effective extensions or variants, i.e., RMAVCK and RMAVC_FM, by exploiting multiple kernel trick and flexible manifold regularization, respectively. The proposed framework and its variants are robust for classifying visual objects accurately and the experimental results demonstrate the effectiveness of our methods on several types of image and video datasets. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:47 / 65
页数:19
相关论文
共 50 条
  • [31] Multi-source Domain Adaptation of Weighted Disentangled Semantic Representation
    Cai R.-C.
    Zheng L.-J.
    Li Z.-J.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (12): : 4517 - 4533
  • [32] Action Recognition Using Low-Rank Sparse Representation
    Cheng, Shilei
    Gu, Song
    Ye, Maoquan
    Xie, Mei
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (03) : 830 - 834
  • [33] Low-rank and discriminate block diagonal representation via projection reconstruction for image classification
    Zhu, Gang
    Han, Lixin
    DIGITAL SIGNAL PROCESSING, 2025, 162
  • [34] Robust multi-view low-rank embedding clustering
    Dai, Jian
    Song, Hong
    Luo, Yunzhi
    Ren, Zhenwen
    Yang, Jian
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (10) : 7877 - 7890
  • [35] Low-rank representation-based regularized subspace learning method for unsupervised domain adaptation
    Yang, Liran
    Men, Min
    Xue, Yiming
    Zhong, Ping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (3-4) : 3031 - 3047
  • [36] Robust Facial Expression Recognition with Low-Rank Sparse Error Dictionary Based Probabilistic Collaborative Representation Classification
    Sun, Zhe
    Hu, Zheng-Ping
    Wang, Meng
    Bai, Fan
    Sun, Bo
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2017, 26 (04)
  • [37] Robust Neighborhood Preserving Low-Rank Sparse CNN Features for Classification
    Tang, Zemin
    Zhang, Zhao
    Ma, Xiaohu
    Qin, Jie
    Zhao, Mingbo
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I, 2018, 11164 : 357 - 369
  • [38] JOINT LOW-RANK REPRESENTATION AND TRANSFER MULTI-VIEW LEARNING APPROACH FOR EEG EPILEPSY CLASSIFICATION
    Zang, Hao
    Jiao, Lei
    Qin, Tao
    Qian, Jiansheng
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (09)
  • [39] Symmetric low-rank representation with adaptive distance penalty for semi-supervised learning
    Wang, Chang-Peng
    Zhang, Jiang-She
    Du, Fang
    Shi, Guang
    NEUROCOMPUTING, 2018, 316 : 376 - 385
  • [40] Robust subspace learning-based low-rank representation for manifold clustering
    Tang, Kewei
    Su, Zhixun
    Jiang, Wei
    Zhang, Jie
    Sun, Xiyan
    Luo, Xiaonan
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (11) : 7921 - 7933