Magnitude, spatial distribution and uncertainty of forest biomass stocks in Mexico

被引:92
|
作者
Rodriguez-Veiga, Pedro [1 ,2 ]
Saatchi, Sassan [3 ]
Tansey, Kevin [1 ]
Balzter, Heiko [1 ,2 ]
机构
[1] Univ Leicester, Ctr Landscape & Climate Res, Dept Geog, Univ Rd, Leicester, Leics, England
[2] Univ Leicester, NCEO, Univ Rd, Leicester, Leics, England
[3] NASA, Jet Prop Lab, 4800 Oak Groove Dr, Pasadena, CA USA
关键词
Forest biomass; Uncertainty; Forest probability; MODIS; ALOS PALSAR; SRTM; Carbon; MaxEnt; REDD; PALSAR L-BAND; TROPICAL FOREST; CARBON STOCKS; ALOS PALSAR; BOREAL FOREST; LAND-COVER; SAR IMAGERY; CLASSIFICATION; ALLOMETRY; DENSITY;
D O I
10.1016/j.rse.2016.06.004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Existing forest biomass stock maps show discrepancies with in-situ observations in Mexico. Ground data from the National Forest and Soil Inventory of Mexico (INFyS) were used to calibrate a maximum entropy (MaxEnt) algorithm to generate forest biomass (AGB), its associated uncertainty, and forest probability maps. The input predictor layers for the MaxEnt algorithm were extracted from the moderate resolution imaging spectrometer (MODIS) vegetation index (VI) products, ALOS PALSAR L-band dual-polarization backscatter coefficient images, and the Shuttle Radar Topography Mission (SRTM) digital elevation model. A Jackknife analysis of the model accuracy indicated that the ALOS PALSAR layers have the highest relative contribution (50.9%) to the estimation of AGB, followed by MODIS-VI (32.9%) and SRTM (16.2%). The forest cover mask derived from the forest probability map showed higher accuracy (kappa = 0.83) than alternative masks derived from ALOS PALSAR (kappa = 0.72-0.78) or MODIS vegetation continuous fields (VCF) with a 10% tree cover threshold (kappa = 0.66). The use of different forest cover masks yielded differences of about 30 million ha in forest cover extent and 0.45 Gt C in total carbon stocks. The AGB map showed a root mean square error (RMSE) of 173 t C ha(-1) and R-2 = 0.31 when validated at the 250 m pixel scale with inventory plots. The error and accuracy at municipality and state levels were RMSE = +/- 4.4 t C ha(-1), R-2 = 0.75 and RMSE = +/- 2.1 t C ha(-1), R-2 = 0.94 respectively. We estimate the total carbon stored in the aboveground live biomass of forests of Mexico to be 1.69 Gt C +/- 1% (mean carbon density of 21.8 t C ha(-1)), which agrees with the total carbon estimated by FAO for the FRA 2010 (1.68 Gt C). The new map, derived directly from the biomass estimates of the national inventory, proved to have similar accuracy as existing forest biomass maps of Mexico, but is more representative of the shape of the probability distribution function of AGB in the national forest inventory data. Our results suggest that the use of a non-parametric maximum entropy model trained with forest inventory plots, even at the sub-pixel size, can provide accurate spatial maps for national or regional REDD+ applications and MRV systems. (C) 2016 The Authors. Published by Elsevier Inc.
引用
收藏
页码:265 / 281
页数:17
相关论文
共 50 条
  • [1] Uncertainty in the spatial distribution of tropical forest biomass: A comparison of pan-tropical maps
    Mitchard E.T.A.
    Saatchi S.S.
    Baccini A.
    Asner G.P.
    Goetz S.J.
    Harris N.L.
    Brown S.
    Carbon Balance and Management, 8 (1)
  • [2] A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico
    Cartus, Oliver
    Kellndorfer, Josef
    Walker, Wayne
    Franco, Carol
    Bishop, Jesse
    Santos, Lucio
    Michel Fuentes, Jose Maria
    REMOTE SENSING, 2014, 6 (06) : 5559 - 5588
  • [3] Driving Factors and Spatial Distribution of Aboveground Biomass in the Managed Forest in the Terai Region of Nepal
    Bahadur, Yam K. C.
    Liu, Qijing
    Saud, Pradip
    Xu, Chang
    Gaire, Damodar
    Adhikari, Hari
    FORESTS, 2024, 15 (04):
  • [4] Quantifying Forest Biomass Carbon Stocks From Space
    Rodriguez-Veiga, Pedro
    Wheeler, James
    Louis, Valentin
    Tansey, Kevin
    Balzter, Heiko
    CURRENT FORESTRY REPORTS, 2017, 3 (01): : 1 - 18
  • [5] Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
    Rejou-Mechain, M.
    Muller-Landau, H. C.
    Detto, M.
    Thomas, S. C.
    Le Toan, T.
    Saatchi, S. S.
    Barreto-Silva, J. S.
    Bourg, N. A.
    Bunyavejchewin, S.
    Butt, N.
    Brockelman, W. Y.
    Cao, M.
    Cardenas, D.
    Chiang, J. -M.
    Chuyong, G. B.
    Clay, K.
    Condit, R.
    Dattaraja, H. S.
    Davies, S. J.
    Duque, A.
    Esufali, S.
    Ewango, C.
    Fernando, R. H. S.
    Fletcher, C. D.
    Gunatilleke, I. A. U. N.
    Hao, Z.
    Harms, K. E.
    Hart, T. B.
    Herault, B.
    Howe, R. W.
    Hubbell, S. P.
    Johnson, D. J.
    Kenfack, D.
    Larson, A. J.
    Lin, L.
    Lin, Y.
    Lutz, J. A.
    Makana, J. -R.
    Malhi, Y.
    Marthews, T. R.
    McEwan, R. W.
    McMahon, S. M.
    McShea, W. J.
    Muscarella, R.
    Nathalang, A.
    Noor, N. S. M.
    Nytch, C. J.
    Oliveira, A. A.
    Phillips, R. P.
    Pongpattananurak, N.
    BIOGEOSCIENCES, 2014, 11 (23) : 6827 - 6840
  • [6] Quantifying Forest Biomass Carbon Stocks From Space
    Pedro Rodríguez-Veiga
    James Wheeler
    Valentin Louis
    Kevin Tansey
    Heiko Balzter
    Current Forestry Reports, 2017, 3 : 1 - 18
  • [7] Topographic and biotic factors determine forest biomass spatial distribution in a subtropical mountain moist forest
    Xu, Yaozhan
    Franklin, Scott B.
    Wang, Qinggang
    Shi, Zheng
    Luo, Yiqi
    Lu, Zhijun
    Zhang, Jiaxin
    Qiao, Xiujuan
    Jiang, Mingxi
    FOREST ECOLOGY AND MANAGEMENT, 2015, 357 : 95 - 103
  • [8] Spatial distribution of the potential forest biomass availability in Europe
    Verkerk, Pieter Johannes
    Fitzgerald, Joanne Brighid
    Datta, Pawan
    Dees, Matthias
    Hengeveld, Geerten Martijn
    Lindner, Marcus
    Zudin, Sergey
    FOREST ECOSYSTEMS, 2019, 6
  • [9] Spatial distribution of the potential forest biomass availability in Europe
    Pieter Johannes Verkerk
    Joanne Brighid Fitzgerald
    Pawan Datta
    Matthias Dees
    Geerten Martijn Hengeveld
    Marcus Lindner
    Sergey Zudin
    ForestEcosystems, 2019, 6 (01) : 56 - 66
  • [10] Spatial distribution of forest biomass in Brazil's state of Roraima, northern Amazonia
    Barni, Paulo Eduardo
    Manzi, Antonio Ocimar
    Conde, Tiago Monteiro
    Barbosa, Reinaldo Imbrozio
    Fearnside, Philip Martin
    FOREST ECOLOGY AND MANAGEMENT, 2016, 377 : 170 - 181