Multivariate utility maximization under transaction costs

被引:3
作者
Kamizono, K [1 ]
机构
[1] Nagasaki Univ, FAc Econ, Nagasaki 8508506, Japan
来源
STOCHASTIC PROCESSES AND APPLICATIONS TO MATHEMATICAL FINANCE | 2004年
关键词
utility maximization; transaction costs; convex duality;
D O I
10.1142/9789812702852_0007
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We consider a multivariate utility maximization problem in a general multiasset financial market with proportional transaction costs. Unlike the univariate utility case, it is essentially important to avoid the so-called money illusion in the multivariate utility framework. Our utility function depends on the physical amount of the assets rather than the market value of the assets. As such, our utility function can be interpreted as a direct utility function in microeconomics. We generalize the convex duality theory of Kramkov-Schachermayer [Ann. Appl. Probab., 9 (1999), pp. 904-950] to our multivariate utility setting.
引用
收藏
页码:133 / 149
页数:17
相关论文
共 8 条
[1]  
Brannath W, 1999, LECT NOTES MATH, V1709, P349
[2]  
Deelstra G, 2001, ANN APPL PROBAB, V11, P1353
[3]   RISK AVERSION AND CONSUMER PREFERENCES [J].
HANOCH, G .
ECONOMETRICA, 1977, 45 (02) :413-426
[4]   Hedging under transaction costs in currency markets: A continuous-time model [J].
Kabanov, YM ;
Last, G .
MATHEMATICAL FINANCE, 2002, 12 (01) :63-70
[5]  
Karatzas I., 1998, Methods of mathematical finance, V39, pxvi+
[6]  
Kramkov D, 1999, ANN APPL PROBAB, V9, P904
[7]  
LAKNER P, 1989, THESIS COLUMBIA U
[8]  
Rockafellar TR, 1970, CONVEX ANAL