Regularity for a Schrodinger equation with singular potentials and application to bilinear optimal control

被引:56
作者
Baudouin, L [1 ]
Kavian, O [1 ]
Puel, JP [1 ]
机构
[1] Univ Versailles St Quentin, Lab math Appl, F-78035 Versailles, France
关键词
Schrodinger equation; singular potential; regularity; existence; bilinear optimal control; optimality condition;
D O I
10.1016/j.jde.2005.04.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Schrodinger equation i partial derivative(t)u + Delta u + V(0)u + V(1)u = 0 on R-3 x (0, T), where V-0(x, t) = |x - a(t)|(-1), with a is an element of W-2,W-1 (0, T; R-3), is a coulombian potential, singular at finite distance, and VI is an electric potential, possibly unbounded. The initial condition u(0) is an element of H-2(R-3) is such that f(R3) (1 + |x|(2))(2)|u(0)(x)|(2)dx < infinity. The potential V-1 is also real valued and may depend on space and time variables. We prove that if V-1 is regular enough and at most quadratic at infinity, this problem is well-posed and the regularity of the initial data is conserved for the solution. We also give an application to the bilinear optimal control of the solution through the electric potential. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:188 / 222
页数:35
相关论文
共 10 条
[1]  
BAUDOUIN L, THESIS
[2]  
BAUDOUIN L, UNPUB BILINEAR OPTIM
[3]   On the time-dependent Hartree-Fock equations coupled with a classical nuclear dynamics [J].
Cancès, E ;
Le Bris, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (07) :963-990
[4]   Bilinear optimal control of a Schrodinger equation [J].
Cancès, E ;
Le Bris, C ;
Pilot, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (07) :567-571
[5]  
Cazenave T., 1996, TEXTOS METODOS MATEM, V26
[6]   ON THE SCHRODINGER-EQUATION WITH TIME-DEPENDENT ELECTRIC-FIELDS [J].
IORIO, RJ ;
MARCHESIN, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1984, 96 :117-134
[7]  
Kato T., 1970, J. Fac. Sci., Univ. Tokyo, Sect. I, V17, P241
[8]  
Simon J., 1986, ANN MAT PUR APPL, V146, P65, DOI [DOI 10.1007/BF01762360, DOI 10.1007/BF01762360.MR916688]
[9]   EXISTENCE OF SOLUTIONS FOR SCHRODINGER EVOLUTION-EQUATIONS [J].
YAJIMA, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 110 (03) :415-426
[10]   Smoothing property for Schrodinger equations with potential superquadratic at infinity [J].
Yajima, K ;
Zhang, GP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 221 (03) :573-590