MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway

被引:59
|
作者
Wan, Guang [1 ]
An, Yongbo [1 ]
Tao, Jingang [1 ]
Wang, Yanli [2 ]
Zhou, Qinglan [1 ]
Yang, Rongli [1 ]
Liang, Qiudong [1 ]
机构
[1] Xinxiang Med Univ, Affiliated Hosp 1, Dept Orthoped, Weihui 453100, Henan, Peoples R China
[2] Xinxiang Med Univ, Affiliated Hosp 1, Operat Room, Weihui 453100, Henan, Peoples R China
关键词
NECROSIS-FACTOR-ALPHA; REDUCES INFLAMMATION; SIGNALING PATHWAY; EXPRESSION; RECOVERY; RECEPTOR; HMGB1; ACTIVATION; RAPAMYCIN; PROMOTES;
D O I
10.1042/BSR20193315
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Secondary injury after spinal cord injury (SCI) is one reversible pathological change mainly involving excessive inflammatory response and neuro-apoptosis. Since in recent years, microRNAs (miRNAs) have been proposed as novel regulators of inflammation in different disease conditions. However, the role of miRNAs in the inflammatory response and apoptosis of secondary injury after SCI remains to be fully elucidated. Here, we tried to explore the influence and mechanism of miRNAs on the neuron inflammatory response and apoptosis after SCI. The expression profiles of miRNA were examined using miRNA microarray, and among the candidate miRNAs, miR-129-5p was found to be the most down-regulated miRNA in spinal tissues. Overexpression of miR-129-5p using agomir-miR-129-5p promoted injury mice functional recovery, suppressed the apoptosis and alleviated inflammatory response in spinal tissues. Using LPS-induced BV-2 cell model, we found miR-129-5p was also proved in protecting inflammatory response and cell apoptosis in vitro. High-mobility group protein B1 (HMGB1), a well-known inflammatory mediator, was found to be directly targeted by miR-129-5p and it was associated with the inhibitory effect of miR-129-5p on the activation of toll-like receptor (TLR)-4 (TLR4)/nuclear factor-kappa B (NF-kappa B) pathway in vitro and in vivo. Further experiments revealed that the anti-apoptosis and anti-inflammatory effects of miR-129-5p were reversed by HMGB1 overexpression in BV-2 cells. Collectively, these data revealed that miR-129-5p alleviated SCI in mice via suppressing the apoptosis and inflammatory response through HMGB1//TLR4/NF-kappa B pathway. Our data suggest that up-regulation of miR-129-5p may be a novel therapeutic target for SCI.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] MicroRNA-129-5p inhibits the development of autoimmune encephalomyelitis-related epilepsy by targeting HMGB1 through the TLR4/NF-κB signaling pathway
    Liu, Ai-Hua
    Wu, Ya-Ting
    Wang, Yu -Ping
    BRAIN RESEARCH BULLETIN, 2017, 132 : 139 - 149
  • [2] microRNA-182-5p alleviates spinal cord injury by inhibiting inflammation and apoptosis through modulating the TLR4/NF-κB pathway
    Zhang, Junfeng
    Wu, Yaochi
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2018, 11 (06): : 2948 - 2958
  • [3] MicroRNA-488 inhibits neural inflammation and apoptosis in spinal cord injury through restraint on the HMGB1/TLR4/NF-κB signaling pathway
    Niu, Feng
    Pan, Shan
    NEUROREPORT, 2021, 32 (12) : 1017 - 1026
  • [4] Effect of Shikonin on Spinal Cord Injury in Rats Via Regulation of HMGB1/TLR4/NF-κB Signaling Pathway
    Bi, Yihui
    Zhu, Yapeng
    Zhang, Mingkai
    Zhang, Keke
    Hua, Xingyi
    Fang, Zheng
    Zhou, Jian
    Dai, Wenjie
    Cui, Yixing
    Li, Jun
    You, Tao
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2017, 43 (02) : 481 - 491
  • [5] Catalpol Protects Against Spinal Cord Injury in Mice Through Regulating MicroRNA-142-Mediated HMGB1/TLR4/NF-κB Signaling Pathway
    Xia, Hougang
    Wang, Dandan
    Guo, Xiaohui
    Wu, Kaidi
    Huang, Fuwei
    Feng, Yanjiang
    FRONTIERS IN PHARMACOLOGY, 2021, 11
  • [6] Vitamin D reduces inflammatory response in asthmatic mice through HMGB1/TLR4/NF-κB signaling pathway
    Zhang, Han
    Yang, Nan
    Wang, Tianyue
    Dai, Bing
    Shang, Yunxiao
    MOLECULAR MEDICINE REPORTS, 2018, 17 (02) : 2915 - 2920
  • [7] Hyperbaric oxygen intervention reduces secondary spinal cord injury in rats via regulation of HMGB1/TLR4/NF-κB signaling pathway
    Kang, Nan
    Hai, Yong
    Yang, Jing
    Liang, Fang
    Gao, Chun-Jin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2015, 8 (02): : 1141 - 1153
  • [8] Astaxanthin ameliorates spinal cord edema and astrocyte activation via suppression of HMGB1/TLR4/NF-κB signaling pathway in a rat model of spinal cord injury
    Abbaszadeh, Fatemeh
    Jorjani, Masoumeh
    Joghataei, Mohammad Taghi
    Raminfard, Samira
    Mehrabi, Soraya
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2023, 396 (11) : 3075 - 3086
  • [9] Astaxanthin ameliorates spinal cord edema and astrocyte activation via suppression of HMGB1/TLR4/NF-κB signaling pathway in a rat model of spinal cord injury
    Fatemeh Abbaszadeh
    Masoumeh Jorjani
    Mohammad taghi Joghataei
    Samira Raminfard
    Soraya Mehrabi
    Naunyn-Schmiedeberg's Archives of Pharmacology, 2023, 396 : 3075 - 3086
  • [10] Fingolimod Alleviates Inflammation after Cerebral Ischemia via HMGB1/TLR4/NF-κB Signaling Pathway
    Xing, Yao
    Zhong, Liyuan
    Guo, Jun
    Bao, Cuifen
    Luo, Yumin
    Min, Lianqiu
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2024, 23 (08)