Spin Entanglement Witness for Quantum Gravity

被引:531
作者
Bose, Sougato [1 ]
Mazumdar, Anupam [2 ]
Morley, Gavin W. [3 ]
Ulbricht, Hendrik [4 ]
Toros, Marko [4 ]
Paternostro, Mauro [5 ]
Geraci, Andrew A. [6 ]
Barker, Peter F. [1 ]
Kim, M. S. [7 ]
Milburn, Gerard [7 ,8 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] Univ Groningen, Van Swinderen Inst, NL-9747 AG Groningen, Netherlands
[3] Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
[4] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England
[5] Queens Univ Belfast, Sch Math & Phys, CTAMOP, Belfast BT7 1NN, Antrim, North Ireland
[6] Univ Nevada, Dept Phys, Reno, NV 89557 USA
[7] Imperial Coll, Blackett Lab, QOLS, London SW7 2AZ, England
[8] Univ Queensland, Sch Math & Phys, Ctr Engn Quantum Syst, Brisbane, Qld 4072, Australia
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
MODELS;
D O I
10.1103/PhysRevLett.119.240401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements.
引用
收藏
页数:6
相关论文
共 57 条
[11]   Towards Singularity- and Ghost-Free Theories of Gravity [J].
Biswas, Tirthabir ;
Gerwick, Erik ;
Koivisto, Tomi ;
Mazumdar, Anupam .
PHYSICAL REVIEW LETTERS, 2012, 108 (03)
[12]   Quantum gravitational corrections to the nonrelativistic scattering potential of two masses [J].
Bjerrum-Bohr, NEJ ;
Donoghue, JF ;
Holstein, BR .
PHYSICAL REVIEW D, 2003, 67 (08)
[13]   Effective Field Theory Approach to Gravitationally Induced Decoherence [J].
Blencowe, M. P. .
PHYSICAL REVIEW LETTERS, 2013, 111 (02)
[14]   Scheme to probe the decoherence of a macroscopic object [J].
Bose, S ;
Jacobs, K ;
Knight, PL .
PHYSICAL REVIEW A, 1999, 59 (05) :3204-3210
[15]  
Bronstein M., 1936, Phys. Z. Sowjetunion, V9, P140, DOI DOI 10.4310/ATMP.2007.V11.N6.A3
[16]   Decoherence due to gravitational time dilation: Analysis of competing decoherence effects [J].
Carlesso, Matteo ;
Bassi, Angelo .
PHYSICS LETTERS A, 2016, 380 (31-32) :2354-2358
[17]   Black holes as self-sustained quantum states and Hawking radiation [J].
Casadio, Roberto ;
Giugno, Andrea ;
Micu, Octavian ;
Orlandi, Alessio .
PHYSICAL REVIEW D, 2014, 90 (08)
[18]   THE INFLUENCE OF RETARDATION ON THE LONDON-VANDERWAALS FORCES [J].
CASIMIR, HBG ;
POLDER, D .
PHYSICAL REVIEW, 1948, 73 (04) :360-372
[19]   High catalytic activity of magnetic CuFe2O4/graphene oxide composite for the degradation of organic dyes under visible light irradiation [J].
Chen, Peng ;
Xing, Xiang ;
Xie, Huifang ;
Sheng, Qi ;
Qu, Hongxia .
CHEMICAL PHYSICS LETTERS, 2016, 660 :176-181
[20]   Probing a gravitational cat state: Experimental Possibilities [J].
Derakhshani, M. ;
Anastopoulos, G. ;
Hu, B. L. .
EMQM15: EMERGENT QUANTUM MECHANICS 2015, 2016, 701