Spin Entanglement Witness for Quantum Gravity

被引:530
作者
Bose, Sougato [1 ]
Mazumdar, Anupam [2 ]
Morley, Gavin W. [3 ]
Ulbricht, Hendrik [4 ]
Toros, Marko [4 ]
Paternostro, Mauro [5 ]
Geraci, Andrew A. [6 ]
Barker, Peter F. [1 ]
Kim, M. S. [7 ]
Milburn, Gerard [7 ,8 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] Univ Groningen, Van Swinderen Inst, NL-9747 AG Groningen, Netherlands
[3] Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
[4] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England
[5] Queens Univ Belfast, Sch Math & Phys, CTAMOP, Belfast BT7 1NN, Antrim, North Ireland
[6] Univ Nevada, Dept Phys, Reno, NV 89557 USA
[7] Imperial Coll, Blackett Lab, QOLS, London SW7 2AZ, England
[8] Univ Queensland, Sch Math & Phys, Ctr Engn Quantum Syst, Brisbane, Qld 4072, Australia
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
MODELS;
D O I
10.1103/PhysRevLett.119.240401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements.
引用
收藏
页数:6
相关论文
共 57 条
[1]   Testing quantum gravity by nanodiamond interferometry with nitrogen-vacancy centers [J].
Albrecht, Andreas ;
Retzker, Alex ;
Plenio, Martin B. .
PHYSICAL REVIEW A, 2014, 90 (03)
[2]   Probing a gravitational cat state [J].
Anastopoulos, C. ;
Hu, B. L. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (16)
[3]   A master equation for gravitational decoherence: probing the textures of spacetime [J].
Anastopoulos, C. ;
Hu, B. L. .
CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (16)
[4]  
[Anonymous], ARXIV13114558
[5]   Implications of purely classical gravity for inflationary tensor modes [J].
Ashoorioon, Amjad ;
Dev, P. S. Bhupal ;
Mazumdar, Anupam .
MODERN PHYSICS LETTERS A, 2014, 29 (30)
[6]  
Bahrami M., ARXIV150705733
[7]   Solid-state electronic spin coherence time approaching one second [J].
Bar-Gill, N. ;
Pham, L. M. ;
Jarmola, A. ;
Budker, D. ;
Walsworth, R. L. .
NATURE COMMUNICATIONS, 2013, 4
[8]   Gravitational decoherence [J].
Bassi, Angelo ;
Grossardt, Andre ;
Ulbricht, Hendrik .
CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (19)
[9]   Models of wave-function collapse, underlying theories, and experimental tests [J].
Bassi, Angelo ;
Lochan, Kinjalk ;
Satin, Seema ;
Singh, Tejinder P. ;
Ulbricht, Hendrik .
REVIEWS OF MODERN PHYSICS, 2013, 85 (02) :471-527
[10]   Near-field interferometry of a free-falling nanoparticle from a point-like source [J].
Bateman, James ;
Nimmrichter, Stefan ;
Hornberger, Klaus ;
Ulbricht, Hendrik .
NATURE COMMUNICATIONS, 2014, 5