Development and clinical application of a deep learning model to identify acute infarct on magnetic resonance imaging

被引:12
作者
Bridge, Christopher P. [1 ,2 ,3 ,4 ]
Bizzo, Bernardo C. [1 ,2 ,3 ,4 ,5 ,9 ]
Hillis, James M. [1 ,3 ,6 ]
Chin, John K. [1 ]
Comeau, Donnella S. [1 ]
Gauriau, Romane [1 ]
Macruz, Fabiola [1 ]
Pawar, Jayashri [1 ]
Noro, Flavia T. C. [1 ]
Sharaf, Elshaimaa [1 ]
Takahashi, Marcelo Straus [5 ]
Wright, Bradley [1 ]
Kalafut, John F. [7 ]
Andriole, Katherine P. [1 ,3 ,8 ]
Pomerantz, Stuart R. [1 ,3 ,4 ]
Pedemonte, Stefano [1 ]
Gonzalez, R. Gilberto [1 ,2 ,3 ,4 ]
机构
[1] Mass Gen Brigham, MGH & BWH Ctr Clin Data Sci, Boston, MA 02199 USA
[2] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02114 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
[5] Diagnost Amer SA, Sao Paulo, Brazil
[6] Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA
[7] GE Healthcare, Chicago, IL USA
[8] Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
[9] MGH & BWH Ctr Clin Data Sci, Mass Gen Brigham, Suite 1303,Floor 13,100 Cambridge St, Boston, MA 02114 USA
关键词
LESION SEGMENTATION; STROKE LESIONS; SELECTION;
D O I
10.1038/s41598-022-06021-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Stroke is a leading cause of death and disability. The ability to quickly identify the presence of acute infarct and quantify the volume on magnetic resonance imaging (MRI) has important treatment implications. We developed a machine learning model that used the apparent diffusion coefficient and diffusion weighted imaging series. It was trained on 6,657 MRI studies from Massachusetts General Hospital (MGH; Boston, USA). All studies were labelled positive or negative for infarct (classification annotation) with 377 having the region of interest outlined (segmentation annotation). The different annotation types facilitated training on more studies while not requiring the extensive time to manually segment every study. We initially validated the model on studies sequestered from the training set. We then tested the model on studies from three clinical scenarios: consecutive stroke team activations for 6-months at MGH, consecutive stroke team activations for 6-months at a hospital that did not provide training data (Brigham and Women's Hospital [BWH]; Boston, USA), and an international site (Diagnosticos da America SA [DASA]; Brazil). The model results were compared to radiologist ground truth interpretations. The model performed better when trained on classification and segmentation annotations (area under the receiver operating curve [AUROC] 0.995 [95% CI 0.992-0.998] and median Dice coefficient for segmentation overlap of 0.797 [IQR 0.642-0.861]) compared to segmentation annotations alone (AUROC 0.982 [95% CI 0.972-0.990] and Dice coefficient 0.776 [IQR 0.584-0.857]). The model accurately identified infarcts for MGH stroke team activations (AUROC 0.964 [95% CI 0.943-0.982], 381 studies), BWH stroke team activations (AUROC 0.981 [95% CI 0.966-0.993], 247 studies), and at DASA (AUROC 0.998 [95% CI 0.993-1.000], 171 studies). The model accurately segmented infarcts with Pearson correlation comparing model output and ground truth volumes between 0.968 and 0.986 for the three scenarios. Acute infarct can be accurately detected and segmented on MRI in real-world clinical scenarios using a machine learning model.
引用
收藏
页数:11
相关论文
共 41 条
[1]   Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging [J].
Albers, G. W. ;
Marks, M. P. ;
Kemp, S. ;
Christensen, S. ;
Tsai, J. P. ;
Ortega-Gutierrez, S. ;
McTaggart, R. A. ;
Torbey, M. T. ;
Kim-Tenser, M. ;
Leslie-Mazwi, T. ;
Sarraj, A. ;
Kasner, S. E. ;
Ansari, S. A. ;
Yeatts, S. D. ;
Hamilton, S. ;
Mlynash, M. ;
Heit, J. J. ;
Zaharchuk, G. ;
Kim, S. ;
Carrozzella, J. ;
Palesch, Y. Y. ;
Demchuk, A. M. ;
Bammer, R. ;
Lavori, P. W. ;
Broderick, J. P. ;
Lansberg, M. G. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (08) :708-718
[2]  
[Anonymous], 2017, The Lancet, V390, P1151, DOI [DOI 10.1016/S0140-6736(17)32152-9, 10.1016/S0140-6736(17)32152-9, 10.1016/S0140-6736, DOI 10.1016/S0140-6736]
[3]   Better Diffusion Segmentation in Acute Ischemic Stroke Through Automatic Tree Learning Anomaly Segmentation [J].
Boldsen, Jens K. ;
Engedal, Thorbjorn S. ;
Pedraza, Salvador ;
Cho, Tae-Hee ;
Thomalla, Goetz ;
Nighoghossian, Norbert ;
Baron, Jean-Claude ;
Fiehlers, Jens ;
Ostergaard, Leif ;
Mouridseni, Kim .
FRONTIERS IN NEUROINFORMATICS, 2018, 12
[4]   Penumbral imaging and functional outcome in patients with anterior circulation ischaemic stroke treated with endovascular thrombectomy versus medical therapy: a meta-analysis of individual patient-level data [J].
Campbell, Bruce C. V. ;
Majoie, Charles B. L. M. ;
Albers, Gregory W. ;
Menon, Bijoy K. ;
Yassi, Nawaf ;
Sharma, Gagan ;
van Zwam, Wim H. ;
van Oostenbrugge, Robert J. ;
Demchuk, Andrew M. ;
Guillemin, Francis ;
White, Philip ;
Davalos, Antoni ;
van der Lugt, Aad ;
Butcher, Kenneth S. ;
Cherifi, Aboubaker ;
Marquering, Henk A. ;
Cloud, Geoffrey ;
Macho Fernandez, Juan M. ;
Madigan, Jeremy ;
Oppenheim, Catherine ;
Donnan, Geoffrey A. ;
Roos, Yvo B. W. E. M. ;
Shankar, Jai ;
Lingsma, Hester ;
Bonafe, Alain ;
Raoult, Helene ;
Hernandez-Perez, Maria ;
Bharatha, Aditya ;
Jahan, Reza ;
Jansen, Olav ;
Richard, Sebastien ;
Levy, Elad I. ;
Berkhemer, Olvert A. ;
Soudant, Marc ;
Aja, Lucia ;
Davis, Stephen M. ;
Krings, Timo ;
Tisserand, Marie ;
San Roman, Luis ;
Tomasello, Alejandro ;
Beumer, Debbie ;
Brown, Scott ;
Liebeskind, David S. ;
Bracard, Serge ;
Muir, Keith W. ;
Dippel, Diederik W. J. ;
Goyal, Mayank ;
Saver, Jeffrey L. ;
Jovin, Tudor G. ;
Hill, Michael D. .
LANCET NEUROLOGY, 2019, 18 (01) :46-55
[5]  
Chatterjee A, 2019, STROKE, V50, DOI [10.1161/str.50.suppl_1.wmp16, 10.1161/str.50.suppl_1.WMP16, DOI 10.1161/STR.50.SUPPL_1.WMP16]
[6]   Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks [J].
Chen, Liang ;
Bentley, Paul ;
Rueckert, Daniel .
NEUROIMAGE-CLINICAL, 2017, 15 :633-643
[7]   Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study [J].
Chilamkurthy, Sasank ;
Ghosh, Rohit ;
Tanamala, Swetha ;
Biviji, Mustafa ;
Campeau, Norbert G. ;
Venugopal, Vasantha Kumar ;
Mahajan, Vidur ;
Rao, Pooja ;
Warier, Prashant .
LANCET, 2018, 392 (10162) :2388-2396
[8]  
Cicek O., 2016, Medical Image Computing and Computer-Assisted Intervention, V9901, P424, DOI [DOI 10.1007/978-3-319-46723-8_49, DOI 10.1007/978-3-319-46723-849]
[9]   Improved Segmentation and Detection Sensitivity of Diffusion-weighted Stroke Lesions with Synthetically Enhanced Deep Learning [J].
Federau, Christian ;
Christensen, Soren ;
Scherrer, Nino ;
Ospel, Johanna M. ;
Schulze-Zachau, Victor ;
Schmidt, Noemi ;
Breit, Hanns-Christian ;
Maclaren, Julian ;
Lansberg, Maarten ;
Kozerke, Sebastian .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (05) :1-8
[10]   Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016 [J].
Feigin, Valery L. ;
Nguyen, Grant ;
Cercy, Kelly ;
Johnson, Catherine O. ;
Alam, Tahiya ;
Parmar, Priyakumari G. ;
Abajobir, Amanuel A. ;
Abate, Kalkidan H. ;
Abd-Allah, Foad ;
Abejie, Ayenew N. ;
Abyu, Gebre Y. ;
Ademi, Zanfina ;
Agarwal, Gina ;
Ahmed, Muktar B. ;
Akinyemi, Rufus O. ;
Al-Raddadi, Rajaa ;
Aminde, Leopold N. ;
Amlie-Lefond, Catherine ;
Ansari, Hossein ;
Asayesh, Hamid ;
Asgedom, Solomon W. ;
Atey, Tesfay M. ;
Ayele, Henok T. ;
Banach, Maciej ;
Banerjee, Amitava ;
Barac, Aleksandra ;
Barker-Collo, Suzanne L. ;
Barnighausen, Till ;
Barregard, Lars ;
Basu, Sanjay ;
Bedi, Neeraj ;
Behzadifar, Masoud ;
Bejot, Yannick ;
Bennett, Derrick A. ;
Bensenor, Isabela M. ;
Berhe, Derbew F. ;
Boneya, Dube J. ;
Brainin, Michael ;
Campos-Nonato, Ismael R. ;
Caso, Valeria ;
Castaneda-Orjuela, Carlos A. ;
Rivas, Jacquelin C. ;
Catala-Lopez, Ferran ;
Christensen, Hanne ;
Criqui, Michael H. ;
Damasceno, Albertino ;
Dandona, Lalit ;
Dandona, Rakhi ;
Davletov, Kairat ;
de Courten, Barbora .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (25) :2429-2437