The obstacle problem revisited

被引:271
作者
Caffarelli, LA [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
[2] Univ Texas, TICAM, Austin, TX 78712 USA
关键词
D O I
10.1007/BF02498216
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:383 / 402
页数:20
相关论文
共 9 条
[1]   VARIATIONAL-PROBLEMS WITH 2 PHASES AND THEIR FREE BOUNDARIES [J].
ALT, HW ;
CAFFARELLI, LA ;
FRIEDMAN, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :431-461
[2]   A THEOREM OF REAL ANALYSIS AND ITS APPLICATION TO FREE-BOUNDARY PROBLEMS [J].
ATHANASOPOULOS, I ;
CAFFARELLI, LA .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (05) :499-502
[3]   BOUNDARY-BEHAVIOR OF NONNEGATIVE SOLUTIONS OF ELLIPTIC-OPERATORS IN DIVERGENCE FORM [J].
CAFFARELLI, L ;
FABES, E ;
MORTOLA, S ;
SALSA, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :621-640
[4]  
Caffarelli L. A., 1981, B UNIONE MAT ITAL, V18, P109
[5]   REGULARITY OF FREE BOUNDARIES IN HIGHER DIMENSIONS [J].
CAFFARELLI, LA .
ACTA MATHEMATICA, 1977, 139 (3-4) :155-184
[6]   POTENTIAL METHODS IN VARIATIONAL-INEQUALITIES [J].
CAFFARELLI, LA ;
KINDERLEHRER, D .
JOURNAL D ANALYSE MATHEMATIQUE, 1980, 37 :285-295
[7]  
FREHSE J, 1972, B UN MAT ITAL, V6
[8]  
Friedman A., 1982, Variational Principles and Free-Boundary Problems
[9]   BOUNDARY-BEHAVIOR OF HARMONIC-FUNCTIONS IN NON-TANGENTIALLY ACCESSIBLE DOMAINS [J].
JERISON, DS ;
KENIG, CE .
ADVANCES IN MATHEMATICS, 1982, 46 (01) :80-147