Extended Mixed-Effects Item Response Models With the MH-RM Algorithm

被引:29
作者
Chalmers, R. Philip [1 ]
机构
[1] York Univ, Toronto, ON M3J 1P3, Canada
关键词
PACKAGE; ISSUES;
D O I
10.1111/jedm.12072
中图分类号
G44 [教育心理学];
学科分类号
0402 ; 040202 ;
摘要
A mixed-effects item response theory (IRT) model is presented as a logical extension of the generalized linear mixed-effects modeling approach to formulating explanatory IRT models. Fixed and random coefficients in the extended model are estimated using a Metropolis-Hastings Robbins-Monro (MH-RM) stochastic imputation algorithm to accommodate for increased dimensionality due to modeling multiple design- and trait-based random effects. As a consequence of using this algorithm, more flexible explanatory IRT models, such as the multidimensional four-parameter logistic model, are easily organized and efficiently estimated for unidimensional and multidimensional tests. Rasch versions of the linear latent trait and latent regression model, along with their extensions, are presented and discussed, Monte Carlo simulations are conducted to determine the efficiency of parameter recovery of the MH-RM algorithm, and an empirical example using the extended mixed-effects IRT model is presented.
引用
收藏
页码:200 / 222
页数:23
相关论文
共 36 条
  • [11] Generating items during testing: Psychometric issues and models
    Embretson, SE
    [J]. PSYCHOMETRIKA, 1999, 64 (04) : 407 - 433
  • [12] LOGISTIC LATENT TRAIT MODELS WITH LINEAR CONSTRAINTS
    FISCHER, GH
    [J]. PSYCHOMETRIKA, 1983, 48 (01) : 3 - 26
  • [13] Theory of statistical estimation.
    Fisher, RA
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1925, 22 : 700 - 725
  • [14] Bayesian estimation of a multilevel IRT model using Gibbs sampling
    Fox, JP
    Glas, CAW
    [J]. PSYCHOMETRIKA, 2001, 66 (02) : 271 - 288
  • [15] Modeling Rule-Based Item Generation
    Geerlings, Hanneke
    Glas, Cees A. W.
    van der Linden, Wim J.
    [J]. PSYCHOMETRIKA, 2011, 76 (02) : 337 - 359
  • [16] Goldstein H., 1979, Br. Educ. Res. J, V5, P211, DOI DOI 10.1080/0141192790050207
  • [17] Exploratory Bi-Factor Analysis
    Jennrich, Robert I.
    Bentler, Peter M.
    [J]. PSYCHOMETRIKA, 2011, 76 (04) : 537 - 549
  • [18] Accuracy of Laplace approximation for discrete response mixed models
    Joe, Harry
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (12) : 5066 - 5074
  • [19] Lord F.M., 1968, STAT THEORY MENTAL T
  • [20] Lord F.M., 1980, APPL ITEM RESPONSE T, DOI DOI 10.4324/9780203056615