Monogamous latin squares

被引:12
作者
Danziger, Peter [1 ]
Wanless, Ian M. [2 ]
Webb, Bridget S. [3 ]
机构
[1] Ryerson Univ, Dept Math, Toronto, ON M5B 2K3, Canada
[2] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[3] Open Univ, Milton Keynes MK7 6AA, Bucks, England
基金
加拿大自然科学与工程研究理事会;
关键词
Latin square; Monogamous square; MOLS; maxMOLS; Transversal; ORTHOGONAL MATES; MAXIMAL SETS; TRANSVERSALS; PLEXES;
D O I
10.1016/j.jcta.2010.11.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show for all n is not an element of {1, 2, 4} that there exists a latin square of order n that contains two entries gamma(1) and gamma(2) such that there are some transversals through gamma(1) but they all include gamma(2) as well. We use this result to show that if n > 6 and n is not of the form 2p for a prime p >= 11 then there exists a latin square of order n that possesses an orthogonal mate but is not in any triple of MOLS. Such examples provide pairs of 2-maxMOLS. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:796 / 807
页数:12
相关论文
共 13 条
[1]   Indivisible plexes in latin squares [J].
Bryant, Darryn ;
Egan, Judith ;
Maenhaut, Barbara ;
Wanless, Ian M. .
DESIGNS CODES AND CRYPTOGRAPHY, 2009, 52 (01) :93-105
[2]  
Denes J., 1974, LATIN SQUARES THEIR
[3]   Maximal sets of mutually orthogonal Latin squares [J].
Drake, DA ;
van Rees, GHJ ;
Wallis, WD .
DISCRETE MATHEMATICS, 1999, 194 (1-3) :87-94
[4]   MAXIMAL SETS OF LATIN SQUARES AND PARTIAL TRANSVERSALS [J].
DRAKE, DA .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1977, 1 (02) :143-149
[5]  
EGAN J, LATIN SQUARES UNPUB
[6]  
EGAN J, J COMBIN DE IN PRESS
[7]   Latin Squares with No Small Odd Plexes [J].
Egan, Judith ;
Wanless, Ian M. .
JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (06) :477-492
[8]   Indivisible partitions of latin squares [J].
Egan, Judith ;
Wanless, Ian M. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) :402-417
[9]   Latin squares without orthogonal mates [J].
Evans, AB .
DESIGNS CODES AND CRYPTOGRAPHY, 2006, 40 (01) :121-130
[10]   Atomic Latin squares of order eleven [J].
Maenhaut, BM ;
Wanless, IM .
JOURNAL OF COMBINATORIAL DESIGNS, 2004, 12 (01) :12-34