A NONLINEAR EIGENVALUE PROBLEM WITH p(x)-GROWTH AND GENERALIZED ROBIN BOUNDARY VALUE CONDITION

被引:7
作者
Radulescu, Vicentiu D. [1 ,2 ]
Saiedinezhad, Somayeh [3 ]
机构
[1] Romanian Acad, Inst Math Simion Stoilow, POB 1-764, Bucharest 014700, Romania
[2] Univ Craiova, Dept Math, St AI Cuza 13, Craiova 200585, Romania
[3] Iran Univ Sci & Technol, Sch Math, Tehran, Iran
关键词
Nonlinear eigenvalue problem; Lusternik-Schnirelmann principle; variable exponent Sobolev space; p(x)-Laplacian operator; EXISTENCE; EQUATIONS; SPACES;
D O I
10.3934/cpaa.2018003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the study of the following nonlinear eigenvalue problem with Robin boundary condition {-div (a(x, del u)) = lambda b(x, u) in Omega partial derivative A/partial derivative n + beta(x)c(x, u) = 0 on partial derivative Omega. The abstract setting involves Sobolev spaces with variable exponent. The main result of the present paper establishes a sufficient condition for the existence of an unbounded sequence of eigenvalues. Our arguments strongly rely on the Lusternik-Schnirelmann principle. Finally, we focus to the following particular case, which is a p(x)-Laplacian problem with several variable exponents: {-div (a(0)(x)vertical bar del u vertical bar(p(x)-2)del u) = lambda b(0)(x)vertical bar u vertical bar(q(x)-2)u in Omega vertical bar del u vertical bar(P(x)-2)partial derivative U/partial derivative n + beta(x)vertical bar u vertical bar(r(x)-2)u = 0 on partial derivative Omega. Combining variational arguments, we establish several properties of the eigenvalues family of this nonhomogeneous Robin problem.
引用
收藏
页码:39 / 52
页数:14
相关论文
共 28 条