Ethylene hormone receptor action in Arabidopsis

被引:134
作者
Chang, C [1 ]
Stadler, R [1 ]
机构
[1] Univ Maryland, Dept Cell Biol & Mol Genet, College Pk, MD 20782 USA
关键词
D O I
10.1002/bies.1087
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Small gaseous molecules play important roles in biological signaling in both animal and plant physiology. The hydrocarbon gas ethylene has long been known to regulate diverse aspects of plant growth and development, including fruit ripening, leaf senescence and flower abscission. Recent progress has been made toward identifying components involved in ethylene signal transduction in the plant Arabidopsis thaliana. Ethylene is perceived by five receptors that have similarity to two-component signaling proteins. The hydrophobic amino-terminus of the receptors binds ethylene, and mutations in this domain both prevent ethylene binding and confer ethylene insensitivity to the plant; the carboxyl-terminal portion of the receptors has similarity to bacterial histidine protein kinases. Genetic data suggest a model in which ethylene binding inhibits receptor signaling, yet precisely how these receptors function is unclear. Two of the receptors have been found to associate with a negative regulator of ethylene responses called CTR1, which appears to be a mitogen-activated protein kinase (MAPK) kinase kinase, BioEssays 23:619-627, 2001. (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:619 / 627
页数:9
相关论文
共 63 条
[1]  
Abeles FB., 1992, ETHYLENE PLANT BIOL
[2]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[3]   The GAF domain: an evolutionary link between diverse phototransducing proteins [J].
Aravind, L ;
Ponting, CP .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (12) :458-459
[4]   Ethylene perception and signaling: an evolutionary perspective [J].
Bleecker, AB .
TRENDS IN PLANT SCIENCE, 1999, 4 (07) :269-274
[5]   The ethylene-receptor family from Arabidopsis:: structure and function [J].
Bleecker, AB ;
Esch, JJ ;
Hall, AE ;
Rodríguez, FI ;
Binder, BM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1998, 353 (1374) :1405-1412
[6]   INSENSITIVITY TO ETHYLENE CONFERRED BY A DOMINANT MUTATION IN ARABIDOPSIS-THALIANA [J].
BLEECKER, AB ;
ESTELLE, MA ;
SOMERVILLE, C ;
KENDE, H .
SCIENCE, 1988, 241 (4869) :1086-1089
[7]   DIVERSITY IN FUNCTION AND REGULATION OF MAP KINASE PATHWAYS [J].
BLUMER, KJ ;
JOHNSON, GL .
TRENDS IN BIOCHEMICAL SCIENCES, 1994, 19 (06) :236-240
[8]   Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway [J].
Buck, V ;
Quinn, J ;
Pino, TS ;
Martin, H ;
Saldanha, J ;
Makino, K ;
Morgan, BA ;
Millar, JBA .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) :407-419
[9]   MOLECULAR REQUIREMENTS FOR BIOLOGICAL ACTIVITY OF ETHYLENE [J].
BURG, SP ;
BURG, EA .
PLANT PHYSIOLOGY, 1967, 42 (01) :144-&
[10]   Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein [J].
Buttner, M ;
Singh, KB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (11) :5961-5966