On numerical solution of nonlinear parabolic multicomponent diffusion-reaction problems

被引:0
|
作者
Juncu, Gh. [1 ]
Popa, C. [2 ]
Sarbu, Gh. [3 ]
机构
[1] Univ Politehn Bucuresti, Catedra Ingn Chim, Polizu 1, Bucharest 011061, Romania
[2] Ovidius Univ Constanta, Dept Math, Bdul Mamaia 124, Constanta 900527, Romania
[3] Natl Inst Marine Res & Dev Grigore Antipa, Dept Oceanog Coastal & Marine Engn, 300 Mamaia Blvd, Constanta 900581, Romania
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2021年 / 29卷 / 03期
关键词
Multi-component diffusion; Finite differences; Picard Method; Diffusion-reaction equation;
D O I
10.2478/auom-2021-0040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work continues our previous analysis concerning the numerical solution of the multi-component mass transfer equations. The present test problems are two-dimensional, parabolic, non-linear, diffusion- reaction equations. An implicit finite difference method was used to discretize the mathematical model equations. The algorithm used to solve the non-linear system resulted for each time step is the modified Picard iteration. The numerical performances of the preconditioned conjugate gradient algorithms (BICGSTAB and GMRES) in solving the linear systems of the modified Picard iteration were analysed in detail. The numerical results obtained show good numerical performances.
引用
收藏
页码:183 / 200
页数:18
相关论文
共 50 条
  • [1] The local analytic solution to some nonlinear diffusion-reaction problems
    Bognar, Gabriella
    Rozgonyi, Erika
    WSEAS Transactions on Mathematics, 2008, 7 (06) : 391 - 395
  • [2] Numerical solution of fractional diffusion-reaction problems based on BURA
    Harizanov, Stanislav
    Lazarov, Raytcho
    Margenov, Svetozar
    Marinov, Pencho
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (02) : 316 - 331
  • [3] Numerical approach to solution of a diffusion-reaction problem
    Blagoeva, R.R.
    Mechanics Research Communications, 26 (05): : 629 - 634
  • [4] A numerical approach to solution of a diffusion-reaction problem
    Blagoeva, RR
    MECHANICS RESEARCH COMMUNICATIONS, 1999, 26 (05) : 629 - 634
  • [5] On the numerical solution of diffusion-reaction equations with singular source terms
    Ashyraliyev, M.
    Blom, J. G.
    Verwer, J. G.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 216 (01) : 20 - 38
  • [6] A GREEN-FUNCTION METHOD FOR THE SOLUTION OF DIFFUSION-REACTION PROBLEMS
    VRENTAS, JS
    VRENTAS, CM
    AICHE JOURNAL, 1988, 34 (02) : 347 - 348
  • [7] Numerical algorithms for diffusion-reaction problems with non-classical conditions
    Martin-Vaquero, J.
    Queiruga-Dios, A.
    Encinas, A. H.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5487 - 5495
  • [8] Approximate solution to the diffusion-reaction problem with nonlinear kinetics in transient systems
    Reyes, Peralta E.
    Mendez, Regalado A.
    Escobar, Vidriales G.
    Rugerio, Gonzalez C. A.
    INNOVATIONS AND ADVANCED TECHNIQUES IN COMPUTER AND INFORMATION SCIENCES AND ENGINEERING, 2007, : 133 - 138
  • [9] A test of the boundary doubling method for the numerical solution of diffusion-reaction systems
    Kim, H
    Shin, S
    Shin, KJ
    CHEMICAL PHYSICS LETTERS, 1998, 291 (3-4) : 341 - 345
  • [10] MULTIPLICATIVE CONTROL PROBLEMS FOR NONLINEAR CONVECTION- DIFFUSION-REACTION EQUATION
    Brizitskii, R., V
    Saritskaya, Zh. Yu
    Byrganov, A., I
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 : 352 - 360