Irreducibility and embedding problems

被引:0
作者
Bary-Soroker, Lior [1 ]
机构
[1] Univ Duisburg Essen, Inst Expt Math, D-45326 Essen, Germany
关键词
Irreducible specializations; Pseudo algebraically closed extensions; Embedding problems; FIELDS; POLYNOMIALS; EXTENSIONS; RINGS;
D O I
10.1016/j.jalgebra.2012.01.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study irreducible specializations, in particular when group-preserving specializations may not exist. We obtain a criterion in terms of embedding problems. We include several applications to analogs of Schinzel's hypothesis H and to the theory of Hilbertian fields. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 8 条
[1]  
Bary-Soroker L, 2009, P AM MATH SOC, V137, P73
[2]   Irreducible values of polynomials [J].
Bary-Soroker, Lior .
ADVANCES IN MATHEMATICS, 2012, 229 (02) :854-874
[3]   On PAC extensions and scaled trace forms [J].
Bary-Soroker, Lior ;
Kelmer, Dubi .
ISRAEL JOURNAL OF MATHEMATICS, 2010, 175 (01) :113-124
[4]   On pseudo algebraically closed extensions of fields [J].
Bary-Soroker, Lior .
JOURNAL OF ALGEBRA, 2009, 322 (06) :2082-2105
[5]  
Fried M.D., 2008, SERIES MODERN SURVEY, V11
[6]   PSEUDO ALGEBRAICALLY CLOSED FIELDS OVER RINGS [J].
JARDEN, M ;
RAZON, A .
ISRAEL JOURNAL OF MATHEMATICS, 1994, 86 (1-3) :25-59
[7]   Simultaneous prime specializations of polynomials over finite fields [J].
Pollack, Paul .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 97 :545-567
[8]   Abundance of Hilbertian domains [J].
Razon, A .
MANUSCRIPTA MATHEMATICA, 1997, 94 (04) :531-542