Gradient blow-up in generalized Burgers and Boussinesq equations

被引:2
作者
Yushkov, Egor V. [1 ]
Korpusov, Maxim O. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Phys Dept, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
gradient non-linearity; Burgers equation and generalized; Boussinesq equations; blow-up phenomena; method of non-linear capacity; DE-VRIES-TYPE; NONLINEAR EQUATIONS; LOCAL SOLVABILITY;
D O I
10.1070/IM8471
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the influence of gradient non-linearity on the global solubility of initial-boundary value problems for a generalized Burgers equation and an improved Boussinesq equation which are used for describing one-dimensional wave processes in dissipative and dispersive media. For a large class of initial data, we obtain sufficient conditions for global insolubility and a bound for blow-up times. Using the Boussinesq equation as an example, we suggest a modification of the method of non-linear capacity which is convenient from a practical point of view and enables us to estimate the blow-up rate. We use the method of contraction mappings to study the possibility of instantaneous blow-up and short-time existence of solutions.
引用
收藏
页码:1286 / 1296
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 2007, LINEAR NONLINEAR EQU
[2]  
[Anonymous], INTRO THEORY NONLINE
[3]  
Kolmogorov A. N., 1961, ELEMENTS THEORY FUNC, V2
[4]  
Kolmogorov A. N., 2004, ELEMENTS THEORY FUNC, V1
[5]   Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type [J].
Korpusov, M. O. .
IZVESTIYA MATHEMATICS, 2015, 79 (05) :955-1012
[6]   Blow-up of solutions of non-linear equations of Kadomtsev-Petviashvili and Zakharov-Kuznetsov types [J].
Korpusov, M. O. ;
Sveshnikov, A. G. ;
Yushkov, E. V. .
IZVESTIYA MATHEMATICS, 2014, 78 (03) :500-530
[7]   SOLUTION BLOWUP FOR SYSTEMS OF SHALLOW-WATER EQUATIONS [J].
Korpusov, M. O. ;
Yushkov, E. V. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 177 (02) :1505-1514
[8]   Local solvability and solution blowup for the Benjamin-Bona-Mahony-Burgers equation with a nonlocal boundary condition [J].
Korpusov, M. O. ;
Panin, A. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 175 (02) :580-591
[9]  
Mitidieri E., 2001, Tr Mat Inst Steklova, V234, P1
[10]   Local solvability and blowup of the solution of the Rosenau-Burgers equation with different boundary conditions [J].
Panin, A. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 177 (01) :1361-1376