A Review on the Prediction of Energy Consumption in the Industry Sector Based on Machine Learning Approaches

被引:2
作者
Bahij, Mouad [1 ]
Labbadi, Moussa [2 ]
Cherkaoui, Mohamed [1 ]
Chatri, Chakib [1 ]
Elkhatiri, Ali [1 ]
Elouerghi, Achraf [3 ]
机构
[1] Mohammed V Univ, Mohammadia Sch Engineers, Engn Smart & Sustainable Syst Res Ctr, Rabat, Morocco
[2] INSA HdF UPHF, LAMIH, CNRS, UMR 8201, F-59313 Valenciennes, France
[3] Mohammed V Univ, Natl Sch Arts & Crafts, Res Ctr Sci & Technol Engn & Hlth, E2SN, Rabat, Morocco
来源
2021 4TH INTERNATIONAL SYMPOSIUM ON ADVANCED ELECTRICAL AND COMMUNICATION TECHNOLOGIES (ISAECT) | 2021年
关键词
Machine learning; ANN; MLR; DT; RNN; ARTIFICIAL NEURAL-NETWORK; EFFICIENCY; TOOLS;
D O I
10.1109/ISAECT53699.2021.9668559
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Energy efficiency in industry provides some promising solutions for industrial decarbonization and reduction of negative environ-mental impacts. Nowadays, the digitalization of the industry offers an intelligent industrial work network, which allows the use of learning algorithms for the prediction of energy consumption in order to lower the energy bill. This paper investigates different approaches used to predict energy consumption in industry, including Multiple Linear Regression (MLR), Decision Tree (DT), Artificial Neural Networks (ANN) and Recurrent Neural Networks (RNN) based on data collected of meteorological conditions, energy consumption, and lighting in the industry. The review results indicate that the MLR approach is the best forecasting method.
引用
收藏
页数:5
相关论文
共 23 条
[1]   A review on applications of ANN and SVM for building electrical energy consumption forecasting [J].
Ahmad, A. S. ;
Hassan, M. Y. ;
Abdullah, M. P. ;
Rahman, H. A. ;
Hussin, F. ;
Abdullah, H. ;
Saidur, R. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 33 :102-109
[2]   Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors [J].
Azadeh, A. ;
Ghaderi, S. F. ;
Sohrabkhani, S. .
ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (08) :2272-2278
[3]  
Bahij M., DIGITAL TECHNOLOGIES, V211
[4]   Using machine learning tools for forecasting natural gas consumption in the province of Istanbul [J].
Beyca, Omer Faruk ;
Ervural, Beyzanur Cayir ;
Tatoglu, Ekrem ;
Ozuyar, Pinar Gokcin ;
Zaim, Selim .
ENERGY ECONOMICS, 2019, 80 :937-949
[5]   Short-term industrial reactive power forecasting [J].
Bracale, Antonio ;
Carpinelli, Guido ;
De Falco, Pasquale ;
Hong, Tao .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 107 :177-185
[6]   The link between Industry 4.0 and lean manufacturing: mapping current research and establishing a research agenda [J].
Buer, Sven-Vegard ;
Strandhagen, Jan Ola ;
Chan, Felix T. S. .
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2018, 56 (08) :2924-2940
[7]   Demand forecasting with color parameter in retail apparel industry using artificial neural networks (ANN) and support vector machines (SVM) methods [J].
Guven, Ilker ;
Simsir, Fuat .
COMPUTERS & INDUSTRIAL ENGINEERING, 2020, 147
[8]  
Hambali A. O. J., 2016, COMPUT INF SYST DEV, V7, P42
[9]   The changing science of machine learning [J].
Langley, Pat .
MACHINE LEARNING, 2011, 82 (03) :275-279
[10]   A stochastic frontier analysis of energy efficiency of China's chemical industry [J].
Lin, Boqiang ;
Long, Houyin .
JOURNAL OF CLEANER PRODUCTION, 2015, 87 :235-244