Impeded thermal transport in Si multiscale hierarchical architectures with phononic crystal nanostructures

被引:69
作者
Nomura, M. [1 ,2 ,3 ]
Kage, Y. [1 ]
Nakagawa, J. [1 ]
Hori, T. [4 ]
Maire, J. [5 ]
Shiomi, J. [4 ]
Anufriev, R. [1 ]
Moser, D. [3 ]
Paul, O. [3 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
[2] Univ Tokyo, Inst Nano Quantum Informat Elect, Tokyo 1538505, Japan
[3] Univ Freiburg, Dept Microsyst Engn IMTEK, D-79110 Freiburg, Germany
[4] Univ Tokyo, Dept Mech Engn, Tokyo 1138656, Japan
[5] Univ Tokyo, Natl Ctr Sci Res, LIMMS, CNRS,IIS, Tokyo 1538505, Japan
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 20期
关键词
DOMAIN THERMOREFLECTANCE; GRAIN-BOUNDARIES; SILICON; CONDUCTIVITY; SCATTERING; THERMOELECTRICS; PERFORMANCE; CONDUCTANCE; FILMS;
D O I
10.1103/PhysRevB.91.205422
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In-plane thermal conduction and phonon transport in both single-crystalline and polycrystalline Si two-dimensional phononic crystal (PnC) nanostructures were investigated at room temperature. The impact of phononic patterning on thermal conductivity was larger in polycrystalline Si PnCs than in single-crystalline Si PnCs. The difference in the impact is attributed to the difference in the thermal phonon mean free path (MFP) distribution induced by grain boundary scattering in the two materials. Grain size analysis and numerical simulation using the Monte Carlo technique indicate that grain boundaries and phononic patterning are efficient phonon scattering mechanisms for different MFP length scales. This multiscale phonon scattering structure covers a large part of the broad distribution of thermal phonon MFPs and thus efficiently reduces thermal conduction.
引用
收藏
页数:6
相关论文
共 36 条
[1]   Marked Effects of Alloying on the Thermal Conductivity of Nanoporous Materials [J].
Bera, Chandan ;
Mingo, Natalio ;
Volz, Sebastian .
PHYSICAL REVIEW LETTERS, 2010, 104 (11)
[2]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[3]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[4]  
Dames C., 2005, THERMOELECTRICS HDB
[5]   Thermal transport in phononic crystals: The role of zone folding effect [J].
Dechaumphai, Edward ;
Chen, Renkun .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)
[6]   Heat transport in silicon from first-principles calculations [J].
Esfarjani, Keivan ;
Chen, Gang ;
Stokes, Harold T. .
PHYSICAL REVIEW B, 2011, 84 (08)
[7]   The conductivity of thin metallic films according to the electron theory of metals [J].
Fuchs, K .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1938, 34 :100-108
[8]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5
[9]   Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning [J].
Hopkins, Patrick E. ;
Reinke, Charles M. ;
Su, Mehmet F. ;
Olsson, Roy H., III ;
Shaner, Eric A. ;
Leseman, Zayd C. ;
Serrano, Justin R. ;
Phinney, Leslie M. ;
El-Kady, Ihab .
NANO LETTERS, 2011, 11 (01) :107-112
[10]   Effective phonon mean free path in polycrystalline nanostructures [J].
Hori, Takuma ;
Shiomi, Junichiro ;
Dames, Chris .
APPLIED PHYSICS LETTERS, 2015, 106 (17)