Faber and Newton polynomial integrators for open-system density matrix propagation

被引:67
作者
Huisinga, W
Pesce, L
Kosloff, R
Saalfrank, P
机构
[1] Konrad Zuse Zentrum Informat Tech Berlin, D-14195 Berlin, Germany
[2] Free Univ Berlin, Inst Theoret & Phys Chem, D-14195 Berlin, Germany
[3] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[4] Hebrew Univ Jerusalem, Dept Phys Chem, IL-91904 Jerusalem, Israel
[5] Univ London Univ Coll, Dept Chem, London WC1H 0AJ, England
关键词
D O I
10.1063/1.478451
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two polynomial expansions of the time-evolution superoperator to directly integrate Markovian Liouville-von Neumann (LvN) equations for quantum open systems, namely the Newton interpolation and the Faber approximation, are presented and critically compared. Details on the numerical implementation including error control, and on the performance of either method are given. In a first physical application, a damped harmonic oscillator is considered. Then, the Faber approximation is applied to compute a condensed phase absorption spectrum, for which a semianalytical expression is derived. Finally, even more general applications are discussed. In all applications considered here it is found that both the Newton and Faber integrators are fast, general, stable, and accurate. (C) 1999 American Institute of Physics. [S0021-9606(99)00512-7].
引用
收藏
页码:5538 / 5547
页数:10
相关论文
共 57 条
[1]  
ALICKI R, 1987, LECT NTOES PHYSICS, V286
[2]  
[Anonymous], 1993, COMPLEX ANAL
[3]  
ASHKENAZI G, 1992, J CHEM PHYS, V25, P1283
[4]   IMPULSIVE EXCITATION OF COHERENT VIBRATIONAL MOTION GROUND SURFACE DYNAMICS INDUCED BY INTENSE SHORT PULSES [J].
BANIN, U ;
BARTANA, A ;
RUHMAN, S ;
KOSLOFF, R .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (10) :8461-8481
[5]   SOLUTION OF THE TIME-DEPENDENT LIOUVILLE-VONNEUMANN EQUATION - DISSIPATIVE EVOLUTION [J].
BERMAN, M ;
KOSLOFF, R ;
TALEZER, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (05) :1283-1307
[6]   TIME-DEPENDENT SOLUTION OF THE LIOUVILLE-VONNEUMANN EQUATION - NONDISSIPATIVE EVOLUTION [J].
BERMAN, M ;
KOSLOFF, R .
COMPUTER PHYSICS COMMUNICATIONS, 1991, 63 (1-3) :1-20
[7]  
Blum K., 2012, DENSITY MATRIX THEOR
[8]   STOCHASTIC DYNAMICS OF QUANTUM JUMPS [J].
BREUER, HP ;
PETRUCCIONE, F .
PHYSICAL REVIEW E, 1995, 52 (01) :428-441
[9]  
Bronstein I.N., 1989, TASCHENBUCH MATH
[10]   Dynamics of predissociation in the condensed phase: Markovian master equation [J].
Burghardt, I .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (23) :4192-4206