FIBER TRACTOGROPHY AND TRACT SEGMENTATION IN MULTIPLE SCLEROSIS LESIONS

被引:0
作者
Shiee, Navid [1 ]
Bazin, Pierre-Louis [1 ]
Calabresi, Peter A. [1 ]
Reich, Daniel S. [1 ]
Pham, Dzung L. [1 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
来源
2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO | 2011年
关键词
Diffusion weighted imaging; Diffusion tensor imaging; Fiber tracking; WM bundle segmentation; Multiple Sclerosis; WM lesions; DIFFUSION; TRACKING; MRI;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Diffusion tensor imaging provides rich information about human brain connectivity in vivo, yet most current methods for fiber tractography or tract segmentation do not address white matter pathologies such as multiple sclerosis lesions, which can alter the diffusion tensor characteristics. We study here the effects of MS lesions on estimated diffusion tensors and how they affect the processing of fibers and tracts. An efficient correction algorithm is proposed to compensate for lesion areas in two different approaches to fiber tracking and tract segmentation. Application of the algorithm to real data acquired from MS patients demonstrates improved fiber tracking through lesion regions.
引用
收藏
页码:1488 / 1491
页数:4
相关论文
共 50 条
  • [31] The impact of isolated lesions on white-matter fiber tracts in multiple sclerosis patients
    Droby, Amgad
    Fleischer, Vinzenz
    Carnini, Marco
    Zimmermann, Hilga
    Siffrin, Volker
    Gawehn, Joachim
    Erb, Michael
    Hildebrandt, Andreas
    Baier, Bernhard
    Zipp, Frauke
    NEUROIMAGE-CLINICAL, 2015, 8 : 110 - 116
  • [32] A toolbox for multiple sclerosis lesion segmentation
    Roura, Eloy
    Oliver, Arnau
    Cabezas, Mariano
    Valverde, Sergi
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Llado, Xavier
    NEURORADIOLOGY, 2015, 57 (10) : 1031 - 1043
  • [33] Bilateral tumefactive multiple sclerosis lesions
    Haritanti, A
    Lefkopoulos, A
    Papadopoulou, E
    Kouskouras, C
    Hatzisavvas, N
    Pashalidou, M
    Taskos, N
    Dimitriadis, A
    RIVISTA DI NEURORADIOLOGIA, 2005, 18 (03): : 365 - 370
  • [34] Imaging cortical lesions in multiple sclerosis
    Mainero, Caterina
    Treaba, Constantina A.
    Barbuti, Elena
    CURRENT OPINION IN NEUROLOGY, 2023, 36 (03) : 222 - 228
  • [35] Fuzzy Based Segmentation of Multiple Sclerosis Lesions in Magnetic Resonance Brain Images
    Bijar, Ahmad
    Khayati, Rasoul
    Penalver Benavent, Antonio
    2012 25TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2012,
  • [36] Edges-enhanced Convolutional Neural Network for Multiple Sclerosis Lesions Segmentation
    Ulloa-Poblete, Gustavo
    Allende-Cid, Hector
    Veloz, Alejandro
    Allende, Hector
    COMPUTACION Y SISTEMAS, 2023, 27 (01): : 237 - 245
  • [37] A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions
    Shiee, Navid
    Bazin, Pierre-Louis
    Ozturk, Arzu
    Reich, Daniel S.
    Calabresi, Peter A.
    Pham, Dzung L.
    NEUROIMAGE, 2010, 49 (02) : 1524 - 1535
  • [38] Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images
    Jain, Saurabh
    Sima, Diana M.
    Ribbens, Annemie
    Cambron, Melissa
    Maertens, Anke
    Van Hecke, Wim
    De Mey, Johan
    Barkhof, Frederik
    Steenwijk, Martijn D.
    Daams, Marita
    Maes, Frederik
    Van Huffel, Sabine
    Vrenken, Hugo
    Smeets, Dirk
    NEUROIMAGE-CLINICAL, 2015, 8 : 367 - 375
  • [39] An effective method for computerized prediction and segmentation of multiple sclerosis lesions in brain MRI
    Roy, Sudipta
    Bhattacharyya, Debnath
    Bandyopadhyay, Samir Kumar
    Kim, Tai-Hoon
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 140 : 307 - 320
  • [40] Review of Deep Learning Approaches for the Segmentation of Multiple Sclerosis Lesions on Brain MRI
    Zeng, Chenyi
    Gu, Lin
    Liu, Zhenzhong
    Zhao, Shen
    FRONTIERS IN NEUROINFORMATICS, 2020, 14