FIBER TRACTOGROPHY AND TRACT SEGMENTATION IN MULTIPLE SCLEROSIS LESIONS

被引:0
作者
Shiee, Navid [1 ]
Bazin, Pierre-Louis [1 ]
Calabresi, Peter A. [1 ]
Reich, Daniel S. [1 ]
Pham, Dzung L. [1 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
来源
2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO | 2011年
关键词
Diffusion weighted imaging; Diffusion tensor imaging; Fiber tracking; WM bundle segmentation; Multiple Sclerosis; WM lesions; DIFFUSION; TRACKING; MRI;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Diffusion tensor imaging provides rich information about human brain connectivity in vivo, yet most current methods for fiber tractography or tract segmentation do not address white matter pathologies such as multiple sclerosis lesions, which can alter the diffusion tensor characteristics. We study here the effects of MS lesions on estimated diffusion tensors and how they affect the processing of fibers and tracts. An efficient correction algorithm is proposed to compensate for lesion areas in two different approaches to fiber tracking and tract segmentation. Application of the algorithm to real data acquired from MS patients demonstrates improved fiber tracking through lesion regions.
引用
收藏
页码:1488 / 1491
页数:4
相关论文
共 50 条
  • [21] Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks
    Gros, Charley
    De Leener, Benjamin
    Badji, Atef
    Maranzano, Josefina
    Eden, Dominique
    Dupont, Sara M.
    Talbott, Jason
    Ren Zhuoquiong
    Liu, Yaou
    Granberg, Tobias
    Ouellette, Russell
    Tachibana, Yasuhiko
    Hori, Masaaki
    Kamiya, Kouhei
    Chougar, Lydia
    Stawiarz, Leszek
    Hillert, Jan
    Bannier, Ellise
    Kerbrat, Anne
    Edan, Gilles
    Labauge, Pierre
    Callot, Virginie
    Pelletier, Jean
    Audoin, Bertrand
    Rasoanandrianina, Henitsoa
    Brisset, Jean-Christophe
    Valsasina, Paola
    Rocca, Maria A.
    Filippi, Massimo
    Bakshi, Rohit
    Tauhid, Shahamat
    Prados, Ferran
    Yiannakas, Marios
    Kearney, Hugh
    Ciccarelli, Olga
    Smith, Seth
    Treaba, Constantino Andrada
    Mainero, Caterina
    Lefeuvre, Jennifer
    Reich, Daniel S.
    Nair, Govind
    Auclair, Vincent
    McLaren, Donald G.
    Martin, Allan R.
    Fehlings, Michael G.
    Vahdat, Shahabeddin
    Khatibi, Ali
    Doyon, Julien
    Shepherd, Timothy
    Charlson, Erik
    NEUROIMAGE, 2019, 184 : 901 - 915
  • [22] Recent advances in the longitudinal segmentation of multiple sclerosis lesions on magnetic resonance imaging: a review
    Marcos Diaz-Hurtado
    Eloy Martínez-Heras
    Elisabeth Solana
    Jordi Casas-Roma
    Sara Llufriu
    Baris Kanber
    Ferran Prados
    Neuroradiology, 2022, 64 : 2103 - 2117
  • [23] Cortical lesions in multiple sclerosis
    Kidd, D
    Barkhof, F
    McConnell, R
    Algra, PR
    Allen, IV
    Revesz, T
    BRAIN, 1999, 122 : 17 - 26
  • [24] Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches
    Llado, Xavier
    Oliver, Arnau
    Cabezas, Mariano
    Freixenet, Jordi
    Vilanova, Joan C.
    Quiles, Ana
    Valls, Laia
    Ramio-Torrenta, Lluis
    Rovira, Alex
    INFORMATION SCIENCES, 2012, 186 (01) : 164 - 185
  • [25] Automated segmentation of multiple sclerosis lesions based on convolutional neural networks
    Haj Messaoud, Nada
    Mansour, Asma
    Aissi, Mouna
    Ayari, Rim
    Frih, Mahbouba
    Ben Abdallah, Asma
    Bedoui, Mohamed Hedi
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2023, 11 (04) : 1359 - 1377
  • [26] Deep learning segmentation of gadolinium-enhancing lesions in multiple sclerosis
    Coronado, Ivan
    Gabr, Refaat E.
    Narayana, Ponnada A.
    MULTIPLE SCLEROSIS JOURNAL, 2021, 27 (04) : 519 - 527
  • [27] Editorial: Automatic methods for multiple sclerosis new lesions detection and segmentation
    Commowick, Olivier
    Combes, Benoit
    Cervenansky, Frederic
    Dojat, Michel
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [28] Automatic and Robust Segmentation of Multiple Sclerosis Lesions with Convolutional Neural Networks
    Afzal, H. M. Rehan
    Luo, Suhuai
    Ramadan, Saadallah
    Lechner-Scott, Jeannette
    Amin, Mohammad Ruhul
    Li, Jiaming
    Afzal, M. Kamran
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (01): : 977 - 991
  • [29] A Probabilistic framework for the spatio-temporal segmentation of multiple sclerosis lesions in MR images of the brain
    Greenspan, H
    Mayer, A
    Shahar, A
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 1551 - 1559
  • [30] A Cellular Neural Network methodology for the automated segmentation of multiple sclerosis lesions
    Cerasa, Antonio
    Bilotta, Eleonora
    Augimeri, Antonio
    Cherubini, Andrea
    Pantano, Pietro
    Zito, Giancarlo
    Lanza, Pierluigi
    Valentino, Paola
    Gioia, Maria C.
    Quattrone, Aldo
    JOURNAL OF NEUROSCIENCE METHODS, 2012, 203 (01) : 193 - 199