GEOTRACES radium isotopes interlaboratory comparison experiment

被引:30
作者
Charette, Matthew A. [1 ]
Dulaiova, Henrieta [1 ]
Gonneea, Meagan E. [1 ]
Henderson, Paul B. [1 ]
Moore, Willard S. [2 ]
Scholten, Jan C. [3 ]
Pham, M. K. [3 ]
机构
[1] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA
[2] Univ S Carolina, Dept Earth & Ocean Sci, Columbia, SC 29208 USA
[3] IAEA, Environm Labs, MC-98000 Monaco, Monaco
来源
LIMNOLOGY AND OCEANOGRAPHY-METHODS | 2012年 / 10卷
基金
美国国家科学基金会;
关键词
SUBMARINE GROUNDWATER DISCHARGE; RA-228; THORIUM; SAMPLES; SYSTEM; WATER;
D O I
10.4319/lom.2012.10.451
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In anticipation of the international GEOTRACES program, which will study the global marine biogeochemistry of trace elements and isotopes, we conducted a multi-lab intercomparison for radium isotopes. The intercomparison was in two parts involving the distribution of: (1) samples collected from four marine environments (open ocean, continental slope, shelf, and estuary) and (2) a suite of four reference materials prepared with isotopic standards (circulated to participants as 'unknowns'). Most labs performed well with Ra-228 and Ra-224 determination, however, there were a number of participants that reported Ra-226, Ra-223, and Th-228 (supported Ra-224) well outside the 95% confidence interval. Many outliers were suspected to be a result of poorly calibrated detectors, though other method specific factors likely played a role (e. g., detector leakage, insufficient equilibration). Most methods for radium analysis in seawater involve a MnO2 fiber column preconcentration step; as such, we evaluated the extraction efficiency of this procedure and found that it ranged from an average of 87% to 94% for the four stations. Hence, nonquantitative radium recovery from seawater samples may also have played a role in lab-to-lab variability.
引用
收藏
页码:451 / 463
页数:13
相关论文
共 29 条
[1]  
[Anonymous], 2006, GEOTR INT STUD MAR B
[2]   Quantifying submarine groundwater discharge in the coastal zone via multiple methods [J].
Burnett, W. C. ;
Aggarwal, P. K. ;
Aureli, A. ;
Bokuniewicz, H. ;
Cable, J. E. ;
Charette, M. A. ;
Kontar, E. ;
Krupa, S. ;
Kulkarni, K. M. ;
Loveless, A. ;
Moore, W. S. ;
Oberdorfer, J. A. ;
Oliveira, J. ;
Ozyurt, N. ;
Povinec, P. ;
Privitera, A. M. G. ;
Rajar, R. ;
Ramassur, R. T. ;
Scholten, J. ;
Stieglitz, T. ;
Taniguchi, M. ;
Turner, J. V. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2006, 367 (2-3) :498-543
[3]   Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary [J].
Charette, MA ;
Buesseler, KO ;
Andrews, JE .
LIMNOLOGY AND OCEANOGRAPHY, 2001, 46 (02) :465-470
[4]   Radium isotopes as tracers of iron sources fueling a Southern Ocean phytoplankton bloom [J].
Charette, Matthew A. ;
Gonneea, Meagan E. ;
Morris, Paul J. ;
Statham, Peter ;
Fones, Gary ;
Planquette, Helene ;
Salter, Ian ;
Garabato, Alberto Naveira .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2007, 54 (18-20) :1989-1998
[5]   An efficient method for γ-spectrometric determination of radium-226,228 via manganese fibers [J].
Dulaiova, H ;
Burnett, WC .
LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2004, 2 :256-261
[6]   226Ra and Ba concentrations in the Ross Sea measured with multicollector ICP mass spectrometry [J].
Foster, DA ;
Staubwasser, M ;
Henderson, GM .
MARINE CHEMISTRY, 2004, 87 (1-2) :59-71
[7]   Uncertainties associated with 223Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC) [J].
Garcia-Solsona, E. ;
Garcia-Orellana, J. ;
Masque, P. ;
Dulaiova, H. .
MARINE CHEMISTRY, 2008, 109 (3-4) :198-219
[8]  
HANCOCK GJ, 1991, APPL RADIAT ISOTOPES, V42, P63, DOI 10.1016/0883-2889(91)90125-K
[9]   Precise measurement of 228Ra/226Ra ratios and Ra concentrations in seawater samples by multi-collector ICP mass spectrometry [J].
Hsieh, Yu-Te ;
Henderson, Gideon M. .
JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2011, 26 (07) :1338-1346
[10]  
*ISO, 1997, GUID 43 PROF TEST IN