Sato-Tate groups of genus 2 curves

被引:1
作者
Kedlaya, Kiran S. [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
来源
ADVANCES ON SUPERELLIPTIC CURVES AND THEIR APPLICATIONS | 2015年 / 41卷
关键词
Sato-Tate group; abelian varieties; equistribution; Frobenius eigenvalues; HYPERELLIPTIC CURVES; ELLIPTIC-CURVES; POINTS;
D O I
10.3233/978-1-61499-520-3-117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the analogue of the Sato-Tate conjecture for an abelian variety over a number field; this predicts that the zeta functions of the reductions over various finite fields, when properly normalized, have a limiting distribution predicted by a certain group theoretic construction related to Hodge theory, Galois images, and endomorphisms. After making precise the definition of the Sato-Tate group appearing in this conjecture, we describe the classification of Sato-Tate groups of abelian surfaces due to Fite Kedlaya Rotger Sutherland.
引用
收藏
页码:117 / 136
页数:20
相关论文
共 28 条
[1]  
[Anonymous], 1986, GRADUATE TEXTS MATH
[2]  
[Anonymous], 1999, C PUBLICATIONS
[3]  
Banaszak G., INDIANA U MATH J
[4]   THE SATO-TATE CONJECTURE FOR HILBERT MODULAR FORMS [J].
Barnet-Lamb, Thomas ;
Gee, Toby ;
Geraghty, David .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (02) :411-469
[5]  
BIRCH BJ, 1968, J LONDON MATH SOC, V43, P57
[6]   On the modularity of elliptic curves over Q: Wild 3-adic exercises [J].
Breuil, C ;
Conrad, B ;
Diamond, F ;
Taylor, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) :843-939
[7]  
Bucur A., 2013, ARXIV13010139V1
[8]   AUTOMORPHY FOR SOME l-ADIC LIFTS OF AUTOMORPHIC MOD l GALOIS REPRESENTATIONS [J].
Clozel, Laurent ;
Harris, Michael ;
Taylor, Richard .
PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 108, 2008, 108 (108) :1-181
[9]  
Fite F., 2013, ARXIV12120256V2
[10]   Sato-Tate distributions and Galois endomorphism modules in genus 2 [J].
Fite, Francesc ;
Kedlaya, Kiran S. ;
Rotger, Victor ;
Sutherland, Andrew V. .
COMPOSITIO MATHEMATICA, 2012, 148 (05) :1390-1442