Superconvergence of quadratic finite elements on mildly structured grids

被引:48
作者
Huang, Yunqing [1 ,2 ]
Xu, Jinchao [1 ,3 ]
机构
[1] Xiangtan Univ, Inst Computat & Appl Math, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[3] Penn State Univ, Ctr Computat Math & Applicat, University Pk, PA 16802 USA
关键词
superconvergence; gradient recovery; a posteriori error estimates;
D O I
10.1090/S0025-5718-08-02051-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Superconvergence estimates are studied in this paper on quadratic finite element discretizations for second order elliptic boundary value problems on mildly structured triangular meshes. For a large class of practically useful grids, the finite element solution u(h) is proven to be superclose to the inter-polant u(I) and as a result a postprocessing gradient recovery scheme for uh can be devised. The analysis is based on a number of carefully derived identities. In addition to its own theoretical interests, the result in this paper can be used for deriving asymptotically exact a posteriori error estimators for quadratic finite element methods.
引用
收藏
页码:1253 / 1268
页数:16
相关论文
共 17 条
[1]  
ANDREEV AB, 1988, NUMER METH PART D E, V4, P15
[2]  
ANDREEV AB, 1984, C R ACAD BULGARE SCI, V36, P1179
[3]  
[Anonymous], 1989, FINITE ELEMENT SUPER
[4]  
[Anonymous], 2001, FINITE ELEMENT METHO
[5]  
BABUSKA I, 1978, INT J NUMER METHODS, V12
[6]  
BANK R, 2003, SIAM J NUMERICAL ANA, V41
[7]  
BANK RE, 1998, SOFTWARE ENV TOOLS, V5
[8]   Superconvergence for triangular order k=1 Raviart-Thomas mixed finite elements and for triangular standard quadratic finite element methods [J].
Brandts, JH .
APPLIED NUMERICAL MATHEMATICS, 2000, 34 (01) :39-58
[9]  
Chen C. M., 1995, HIGH ACCURACY THEORY
[10]  
GOODSELL G, 1991, NUMER METH PART D E, V7, P61