Filling Gaps in Hourly Air Temperature Data Using Debiased ERA5 Data

被引:24
作者
Lompar, Milos [1 ]
Lalic, Branislava [2 ]
Dekic, Ljiljana [1 ]
Petric, Mina [3 ,4 ,5 ]
机构
[1] Republ Hydrometeorol Serv Serbia, Dept Meteorol, Belgrade 11000, Serbia
[2] Univ Novi Sad, Fac Agr, Novi Sad 21000, Serbia
[3] Univ Ghent, Dept Phys & Astron, Fac Sci, B-9000 Ghent, Belgium
[4] Univ Novi Sad, Fac Sci, Dept Phys, Novi Sad 21000, Serbia
[5] Avia GIS NV, B-2980 Zoersel, Belgium
基金
欧盟地平线“2020”;
关键词
air temperature data gap; gap filling; ERA5; debiasing techniques; SURFACE-TEMPERATURE; PRECIPITATION; INTERPOLATION; RESOLUTION;
D O I
10.3390/atmos10010013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Missing data in hourly and daily temperature data series is a common problem in long-term data series and many observational networks. Agricultural and environmental models and climate-related tools can be used only if weather data series are complete. To support user communities, a technique for gap filling is developed based on the debiasing of ERA5 reanalysis data, the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalyses of the global climate. The debiasing procedure includes in situ measured temperature. The methodology is tested for different landscapes, latitudes, and altitudes, including tropical and midlatitudes. An evaluation of results in terms of root mean square error (RMSE) obtained using hourly and daily data is provided. The study shows very low average RMSE for all gap lengths ranging from 1.1 degrees C (Montecristo, Italy) to 1.9 degrees C (Gumpenstein, Austria).
引用
收藏
页数:24
相关论文
共 40 条
[1]  
Beckers JM, 2003, J ATMOS OCEAN TECH, V20, P1839, DOI 10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO
[2]  
2
[3]   Evaluating the JULES Land Surface Model Energy Fluxes Using FLUXNET Data [J].
Blyth, Eleanor ;
Gash, John ;
Lloyd, Amanda ;
Pryor, Matthew ;
Weedon, Graham P. ;
Shuttleworth, Jim .
JOURNAL OF HYDROMETEOROLOGY, 2010, 11 (02) :509-519
[4]  
CAO HX, 1992, J CLIMATE, V5, P920, DOI 10.1175/1520-0442(1992)005<0920:SDRAVO>2.0.CO
[5]  
2
[6]   A Serially Complete US Dataset of Temperature and Precipitation for Decision Support Systems [J].
Chen, Z. ;
Goddard, S. ;
Hubbard, K. G. ;
Sorensen, W. S. ;
You, J. .
JOURNAL OF ENVIRONMENTAL INFORMATICS, 2006, 8 (02) :86-99
[7]   Missing data estimation for 1-6 h gaps in energy use and weather data using different statistical methods [J].
Claridge, David E. ;
Chen, Hui .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2006, 30 (13) :1075-1091
[8]   TESTS FOR DEPARTURE FROM NORMALITY - EMPIRICAL RESULTS FOR DISTRIBUTIONS OF B2 AND SQUARE ROOT B1 [J].
DAGOSTIN.R ;
PEARSON, ES .
BIOMETRIKA, 1973, 60 (03) :613-622
[9]   OMNIBUS TEST OF NORMALITY FOR MODERATE AND LARGE SIZE SAMPLES [J].
DAGOSTINO, RB .
BIOMETRIKA, 1971, 58 (02) :341-+
[10]   A knowledge-based approach to the statistical mapping of climate [J].
Daly, C ;
Gibson, WP ;
Taylor, GH ;
Johnson, GL ;
Pasteris, P .
CLIMATE RESEARCH, 2002, 22 (02) :99-113