Nanowire Heterostructures Comprising Germanium Stems and Silicon Branches as High-Capacity Li-Ion Anodes with Tunable Rate Capability

被引:81
作者
Kennedy, Tadhg [1 ,2 ]
Bezuidenhout, Michael [1 ,2 ]
Palaniappan, Kumaranand [1 ,2 ]
Stokes, Killian [1 ,2 ]
Brandon, Michael [1 ,2 ]
Ryan, Kevin M. [1 ,2 ]
机构
[1] Univ Limerick, Mat & Surface Sci Inst, Limerick, Ireland
[2] Univ Limerick, Dept Chem & Environm Sci, Limerick, Ireland
基金
爱尔兰科学基金会;
关键词
silicon; germanium; branched nanowires; heterostructure; lithium-ion anode; CORE-SHELL NANOWIRES; BATTERY ANODES; LITHIUM; PERFORMANCE; ELECTRODES; GROWTH; TIN; LITHIATION;
D O I
10.1021/acsnano.5b02528
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here we report the rational design of a high-capacity Li-ion anode material comprising Ge nanowires with Si branches. The unique structure provides an electrode material with tunable properties, allowing the performance to be tailored for either high capacity or high rate capability by controlling the mass ratio of Si to Ge. The binder free Si-Ge branched nanowire heterostructures are grown directly from the current collector and exhibit high capacities of up to similar to 1800 mAh/g. Rate capability testing revealed that increasing the Ge content within the material boosted the performance of the anode at fast cycling rates, whereas a higher Si content was optimal at slower rates of charge and discharge. Using ex-situ electron microscopy, Raman spectroscopy and energy dispersive X-ray spectroscopy mapping, the composition of the material is shown to be transient in nature, transforming from a heterostructure to a Si-Ge alloy as a consequence of repeated lithiation and delithiation.
引用
收藏
页码:7456 / 7465
页数:10
相关论文
共 46 条
[1]   Nanostructured Si(i-x)Gex for Tunable Thin Film Lithium-Ion Battery Anodes [J].
Abel, Paul R. ;
Chockla, Aaron M. ;
Lin, Yong-Mao ;
Holmberg, Vincent C. ;
Harris, Justin T. ;
Korgel, Brian A. ;
Heller, Adam ;
Mullins, C. Buddie .
ACS NANO, 2013, 7 (03) :2249-2257
[2]   Perpendicular growth of catalyst-free germanium nanowire arrays [J].
Barrett, Christopher A. ;
Geaney, Hugh ;
Gunning, Robert D. ;
Laffir, Fathima R. ;
Ryan, Kevin M. .
CHEMICAL COMMUNICATIONS, 2011, 47 (13) :3843-3845
[3]   High density and patternable growth of silicon, germanium and alloyed SiGe nanowires by a rapid anneal protocol [J].
Bezuidenhout, M. ;
Kennedy, T. ;
Belochapkine, S. ;
Guo, Y. ;
Mullane, E. ;
Kiely, P. A. ;
Ryan, K. M. .
JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (28) :7455-7462
[4]   High capacity lithium ion battery anodes of silicon and germanium [J].
Bogart, Timothy D. ;
Chockla, Aaron M. ;
Korgel, Brian A. .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2013, 2 (03) :286-293
[5]   High capacity Li ion battery anodes using Ge nanowires [J].
Chan, Candace K. ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2008, 8 (01) :307-309
[6]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[7]   Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries [J].
Chen, Huixin ;
Xiao, Ying ;
Wang, Lin ;
Yang, Yong .
JOURNAL OF POWER SOURCES, 2011, 196 (16) :6657-6662
[8]   Enhanced Lithium Ion Battery Cycling of Silicon Nanowire Anodes by Template Growth to Eliminate Silicon Underlayer Islands [J].
Cho, Jeong-Hyun ;
Picraux, S. Tom .
NANO LETTERS, 2013, 13 (11) :5740-5747
[9]   Tin-Seeded Silicon Nanowires for High Capacity Li-Ion Batteries [J].
Chockla, Aaron M. ;
Klavetter, Kyle C. ;
Mullins, C. Buddie ;
Korgel, Brian A. .
CHEMISTRY OF MATERIALS, 2012, 24 (19) :3738-3745
[10]   Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries [J].
Chockla, Aaron M. ;
Klavetter, Kyle C. ;
Mullins, C. Buddie ;
Korgel, Brian A. .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (09) :4658-4664