Mass formula for self-dual codes over Zp2

被引:16
作者
Balmaceda, Jose Maria P. [1 ]
Betty, Rowena Alma L. [1 ]
Nemenzo, Fidel R. [1 ]
机构
[1] Univ Philippines, Dept Math, Quezon City 1101, Philippines
关键词
mass formula; self-dual codes; finite ring; classification;
D O I
10.1016/j.disc.2007.08.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a mass formula for self-dual codes over Z(p2), where p is an odd prime. Using the mass formula, we classify,such codes of lengths up to n = 8 over the ring Z(9), n = 7 over Z(25) and n = 6 over Z(49). (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2984 / 3002
页数:19
相关论文
共 16 条
[1]  
Betsumiya K, 2004, DISCRETE MATH, V275, P43, DOI 10.1016/S0012-365X(03)00097-9
[2]  
Calderbank A. R., 1995, Designs, Codes and Cryptography, V6, P21, DOI 10.1007/BF01390768
[3]   SELF-DUAL CODES OVER THE INTEGERS MODULO-4 [J].
CONWAY, JH ;
SLOANE, NJA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 62 (01) :30-45
[4]   Type II codes over F2+uF2 [J].
Dougherty, ST ;
Gaborit, P ;
Harada, M ;
Solé, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (01) :32-45
[5]   All self-dual Z4 codes of length 15 or less are known [J].
Fields, J ;
Gaborit, P ;
Leon, JS ;
Pless, V .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) :311-322
[6]   Mass formulas for self-dual codes over Z(4) and F-q+uF(q) rings [J].
Gaborit, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (04) :1222-1228
[7]   On the classification of self-dual codes over F5 [J].
Harada, M ;
Östergård, PRJ .
GRAPHS AND COMBINATORICS, 2003, 19 (02) :203-214
[8]   SELF-DUAL CODES OVER GF(5) [J].
LEON, JS ;
PLESS, V ;
SLOANE, NJA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1982, 32 (02) :178-194
[9]  
Mac Williams F., 1977, THEORY ERROR CORRECT
[10]   SELF-DUAL CODES OVER GF(3) [J].
MALLOWS, CL ;
PLESS, V ;
SLOANE, NJA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (04) :649-666