Models of stochastic dynamics of development of industrial enterprises with lagging internal and external investments

被引:1
作者
Saraev, A. L. [1 ]
Saraev, L. A. [1 ]
机构
[1] Samara Natl Res Univ, Dept Math & Business Informat, 34 Moskovskoye Shosse, Samara 443086, Russia
来源
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI | 2021年 / 25卷 / 04期
关键词
enterprise production factors; production function; output; re-sources; stochastic equations; Wiener process; the drift coefficient; volatility factor; lagging investment; DIFFERENTIAL-EQUATIONS; GROWTH; DIFFUSION; EXPANSION;
D O I
10.14498/vsgtu1862
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The article proposes new stochastic models of the dynamic development of enterprises that restore their production at the expense of internal and external lagging investments. Systems of stochastic differential balance equations for such enterprises are established, describing random changes in factors of production and output. Proportional, progressive and digressive depreciation deductions are considered and their interaction with lagging internal and external investments is investigated. The conditions for achieving an equilibrium state of the enterprises work are formulated and the corresponding limiting values of the factors of production are calculated. Algorithms of the Euler-Maruyama method are obtained for numerical solutions of systems of stochastic differential equations of enterprise development. For each numerical implementation of these algorithms, the corresponding stochastic trajectories are constructed for the random functions of factors of production and output. A variant of the method for calculating the mathematical expectations of random functions of production factors is proposed, for which the corresponding system of differential equations is obtained. Numerical analysis of solutions of stochastic differential equations for the developed models showed good agreement with the known statistical data on the development of industrial enterprises.
引用
收藏
页码:738 / 762
页数:26
相关论文
共 56 条
[1]  
Allen E.J., 2007, Modeling With Ito Stochastic Differential Equations, DOI DOI 10.1007/978-1-4020-5953-7
[2]  
Andrianov D. L., 2015, VESTNIK NIZHEGORODSK, P18
[3]  
Andrianov D. L., 2014, UPRAVLENIE EKONOMICH, V67
[4]  
Andrianov D.L., 2015, PERM U HERALD EC, V4, P8
[5]  
[Anonymous], 2008, WORLD J MODELLING SI
[6]   THE ECONOMIC-IMPLICATIONS OF LEARNING BY DOING [J].
ARROW, KJ .
REVIEW OF ECONOMIC STUDIES, 1962, 29 (80) :155-173
[7]  
Artemyev S. S., 2008, MATEMATICHESKOE STAT
[8]  
Badash Kh. Z, 2009, VESTN UDMURTSK U SER, P5
[9]   The law of the Euler scheme for stochastic differential equations .1. Convergence rate of the distribution function [J].
Bally, V ;
Talay, D .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 104 (01) :43-60
[10]  
Bally V., 1996, MONTE CARLO METHODS, P93, DOI [10.1515/mcma.1996.2.2.93, DOI 10.1515/MCMA.1996.2.2.93]