Spatial-Spectral Feature Extraction via Deep ConvLSTM Neural Networks for Hyperspectral Image Classification

被引:147
|
作者
Hu, Wen-Shuai [1 ]
Li, Heng-Chao [1 ]
Pan, Lei [1 ]
Li, Wei [2 ]
Tao, Ran [2 ]
Du, Qian [3 ]
机构
[1] Southwest Jiaotong Univ, Sichuan Prov Key Lab Informat Coding & Transmiss, Chengdu 610031, Peoples R China
[2] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
来源
基金
中国国家自然科学基金;
关键词
Classification; convolutional long short-term memory (ConvLSTM); deep learning; feature extraction; hyperspectral image (HSI);
D O I
10.1109/TGRS.2019.2961947
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent years, deep learning has presented a great advance in the hyperspectral image (HSI) classification. Particularly, long short-term memory (LSTM), as a special deep learning structure, has shown great ability in modeling long-term dependencies in the time dimension of video or the spectral dimension of HSIs. However, the loss of spatial information makes it quite difficult to obtain better performance. In order to address this problem, two novel deep models are proposed to extract more discriminative spatial & x2013;spectral features by exploiting the convolutional LSTM (ConvLSTM). By taking the data patch in a local sliding window as the input of each memory cell band by band, the 2-D extended architecture of LSTM is considered for building the spatial & x2013;spectral ConvLSTM 2-D neural network (SSCL2DNN) to model long-range dependencies in the spectral domain. To better preserve the intrinsic structure information of the hyperspectral data, the spatial & x2013;spectral ConvLSTM 3-D neural network (SSCL3DNN) is proposed by extending LSTM to the 3-D version for further improving the classification performance. The experiments, conducted on three commonly used HSI data sets, demonstrate that the proposed deep models have certain competitive advantages and can provide better classification performance than the other state-of-the-art approaches.
引用
收藏
页码:4237 / 4250
页数:14
相关论文
共 50 条
  • [31] Spatial-spectral morphological mamba for hyperspectral image classification
    Ahmad, Muhammad
    Butt, Muhammad Hassaan Farooq
    Khan, Adil Mehmood
    Mazzara, Manuel
    Distefano, Salvatore
    Usama, Muhammad
    Roy, Swalpa Kumar
    Chanussot, Jocelyn
    Hong, Danfeng
    NEUROCOMPUTING, 2025, 636
  • [32] Spatial-Spectral Decoupling Framework for Hyperspectral Image Classification
    Fang, Jie
    Zhu, Zhijie
    He, Guanghua
    Wang, Nan
    Cao, Xiaoqian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [33] SPATIAL-SPECTRAL CONTRASTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Guan, Peiyan
    Lam, Edmund Y.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1372 - 1375
  • [34] MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification
    Li, Yapeng
    Luo, Yong
    Zhang, Lefei
    Wang, Zengmao
    Du, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [35] Deep Hashing Neural Networks for Hyperspectral Image Feature Extraction
    Fang, Leyuan
    Liu, Zhiliang
    Song, Weiwei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (09) : 1412 - 1416
  • [36] LSSMA: Lightweight Spectral–Spatial Neural Architecture With Multiattention Feature Extraction for Hyperspectral Image Classification
    Ding, Shujie
    Ruan, Xiaoli
    Yang, Jing
    Sun, Jie
    Li, Shaobo
    Hu, Jianjun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 6394 - 6413
  • [37] Deep CNN-based hyperspectral image classification using discriminative multiple spatial-spectral feature fusion
    Guo, Hao
    Liu, Jianjun
    Xiao, Zhiyong
    Xiao, Liang
    REMOTE SENSING LETTERS, 2020, 11 (09) : 827 - 836
  • [38] Hyperspectral Image Super-Resolution Based on Spatial-Spectral Feature Extraction Network
    Li Yanshan
    Chen Shifu
    Luo Wenhan
    Zhou Li
    Xie Weixin
    CHINESE JOURNAL OF ELECTRONICS, 2023, 32 (03) : 415 - 428
  • [39] Deep Spatial-Spectral Subspace Clustering for Hyperspectral Image
    Lei, Jianjun
    Li, Xinyu
    Peng, Bo
    Fang, Leyuan
    Ling, Nam
    Huang, Qingming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (07) : 2686 - 2697
  • [40] SpaSSA: Superpixelwise Adaptive SSA for Unsupervised Spatial-Spectral Feature Extraction in Hyperspectral Image
    Sun, Genyun
    Fu, Hang
    Ren, Jinchang
    Zhang, Aizhu
    Zabalza, Jaime
    Jia, Xiuping
    Zhao, Huimin
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 6158 - 6169