Sculpting with stem cells: how models of embryo development take shape

被引:31
作者
Veenvliet, Jesse V. [1 ,2 ,3 ]
Lenne, Pierre-Francois [4 ]
Turner, David A. [5 ]
Nachman, Iftach [6 ]
Trivedi, Vikas [7 ,8 ]
机构
[1] Max Planck Inst Mol Cell Biol & Genet, Stembryogenesis Lab, Pfotenhauerstr 108, D-01307 Dresden, Germany
[2] Max Planck Inst Mol Genet, Dept Dev Genet, Ihnestr 63-73, D-14195 Berlin, Germany
[3] Tech Univ Dresden, Cluster Excellence Phys Life, D-01307 Dresden, Germany
[4] Aix Marseille Univ, CNRS, IBDM, Turing Ctr Living Syst, F-13288 Marseille, France
[5] Univ Liverpool, Inst Life Course & Med Sci, William Henry Duncan Bldg, Liverpool L7 8TX, Merseyside, England
[6] Tel Aviv Univ, Sch Neurobiol Biochem & Biophys, IL-6997801 Tel Aviv, Israel
[7] European Mol Biol Labs EMBL, Barcelona 08003, Spain
[8] EMBL Heidelberg, Dev Biol Unit, D-69117 Heidelberg, Germany
来源
DEVELOPMENT | 2021年 / 148卷 / 24期
基金
英国国家替代、减少和改良动物研究中心; 英国惠康基金;
关键词
Morphogenesis; Mechanobiology; Self-organisation; Embryogenesis; Organoids; Somitogenesis; Neural tube; Stem cells; Gastruloids; Stembryogenesis; ANTERIOR-POSTERIOR AXIS; IN-VITRO; SELF-ORGANIZATION; EXTRACELLULAR-MATRIX; NEURAL-TUBE; MECHANICAL FORCES; SYMMETRY-BREAKING; GROWTH-FACTORS; MOUSE; MORPHOGENESIS;
D O I
10.1242/dev.192914
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
During embryogenesis, organisms acquire their shape given boundary conditions that impose geometrical, mechanical and biochemical constraints. A detailed integrative understanding how these morphogenetic information modules pattern and shape the mammalian embryo is still lacking, mostly owing to the inaccessibility of the embryo in vivo for direct observation and manipulation. These impediments are circumvented by the developmental engineering of embryo-like structures (stembryos) from pluripotent stem cells that are easy to access, track, manipulate and scale. Here, we explain how unlocking distinct levels of embryo-like architecture through controlled modulations of the cellular environment enables the identification of minimal sets of mechanical and biochemical inputs necessary to pattern and shape the mammalian embryo. We detail how this can be complemented with precise measurements and manipulations of tissue biochemistry, mechanics and geometry across spatial and temporal scales to provide insights into the mechanochemical feedback loops governing embryo morphogenesis. Finally, we discuss how, even in the absence of active manipulations, stembryos display intrinsic phenotypic variability that can be leveraged to define the constraints that ensure reproducible morphogenesis in vivo.
引用
收藏
页数:17
相关论文
共 50 条
[21]   In vitro models of pancreatic differentiation using embryonic stem or induced pluripotent stem cells [J].
Higuchi, Yuichiro ;
Shiraki, Nobuaki ;
Kume, Shoen .
CONGENITAL ANOMALIES, 2011, 51 (01) :21-25
[22]   Stem cell-based models of early mammalian development [J].
Terhune, Aidan H. ;
Bok, Jeyoon ;
Sun, Shiyu ;
Fu, Jianping .
DEVELOPMENT, 2022, 149 (20)
[23]   Gastruloids: Pluripotent stem cell models of mammalian gastrulation and embryo engineering [J].
Arias, Alfonso Martinez ;
Marikawa, Yusuke ;
Moris, Naomi .
DEVELOPMENTAL BIOLOGY, 2022, 488 :35-46
[24]   Distinct stem cells contribute to mammary gland development and maintenance [J].
Van Keymeulen, Alexandra ;
Rocha, Ana Sofia ;
Ousset, Marielle ;
Beck, Benjamin ;
Bouvencourt, Gaelle ;
Rock, Jason ;
Sharma, Neha ;
Dekoninck, Sophie ;
Blanpain, Cedric .
NATURE, 2011, 479 (7372) :189-U58
[25]   Pluripotent Stem Cells as Models of Retina Development [J].
Amy Q. Lu ;
Colin J. Barnstable .
Molecular Neurobiology, 2019, 56 :6056-6070
[26]   Hypoblast from human pluripotent stem cells regulates epiblast development [J].
Okubo, Takumi ;
Rivron, Nicolas ;
Kabata, Mio ;
Masaki, Hideki ;
Kishimoto, Keiko ;
Semi, Katsunori ;
Nakajima-Koyama, May ;
Kunitomi, Haruko ;
Kaswandy, Belinda ;
Sato, Hideyuki ;
Nakauchi, Hiromitsu ;
Woltjen, Knut ;
Saitou, Mitinori ;
Sasaki, Erika ;
Yamamoto, Takuya ;
Takashima, Yasuhiro .
NATURE, 2024, 626 (7998) :357-366
[27]   Mammary gland development: cell fate specification, stem cells and the microenvironment [J].
Inman, Jamie L. ;
Robertson, Claire ;
Mott, Joni D. ;
Bissell, Mina J. .
DEVELOPMENT, 2015, 142 (06) :1028-1042
[28]   Caenorhabditis elegans Gastrulation: A Model for Understanding How Cells Polarize, Change Shape, and Journey Toward the Center of an Embryo [J].
Goldstein, Bob ;
Nance, Jeremy .
GENETICS, 2020, 214 (02) :265-277
[29]   Fibronectin assembly during early embryo development: A versatile communication system between cells and tissues [J].
de Almeida, Patricia Gomes ;
Pinheiro, Goncalo G. ;
Nunes, Andreia M. ;
Goncalves, Andre B. ;
Thorsteinsdottir, Solveig .
DEVELOPMENTAL DYNAMICS, 2016, 245 (04) :520-535
[30]   How parental factors shape the plant embryo [J].
Wangler, Alexa-Maria ;
Bayer, Martin .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2025, 53 (01) :25-31