COMPUTATION OF THE COMPLEX ERROR FUNCTION USING MODIFIED TRAPEZOIDAL RULES

被引:5
作者
Al Azah, Mohammad [1 ]
Chandler-Wilde, Simon N. [2 ]
机构
[1] Al Hussein Tech Univ HTU, Sch Social & Basic Sci, Amman, Jordan
[2] Univ Reading, Dept Math & Stat, POB 220, Reading RG6 6AX, Berks, England
关键词
trapezoidal rule; complementary error function; Faddeeva function; EFFICIENT COMPUTATION; INTEGRALS;
D O I
10.1137/20M1373037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a method for computing the Faddeeva function w(z) := e(-z2) erfc(-i z) via truncated modified trapezoidal rule approximations to integrals on the real line. Our starting point is the method due to Matta and Reichel [Math. Cornp., 25 (1971), pp. 339-344] and Hunter and Regan [Math. Comp., 26 (1972), pp. 339-541]. Addressing shortcomings flagged by Weideman [SIAM. T. Numer. Anal., 31 (1994), pp. 1497-1518], we construct approximations which we prove are exponentially convergent as a function of N + 1, the number of quadrature points, obtaining error bounds which show that accuracies of 2 x 10(-15) in the computation of w(z) throughout the complex plane are achieved with N = 11; this is confirmed by computations. These approximations, moreover, provably achieve small relative errors throughout the upper complex half-plane where w(z) is nonzero. Numerical tests suggest that this new method is competitive, in accuracy and computation times, with existing methods for computing w(z) for complex z.
引用
收藏
页码:2346 / 2367
页数:22
相关论文
共 28 条
[1]   Sampling by incomplete cosine expansion of the sinc function: Application to the Voigt/complex error function [J].
Abrarov, S. M. ;
Quine, B. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 :425-435
[2]   A sampling-based approximation of the complex error function and its implementation without poles [J].
Abrarov, Sanjar M. ;
Quine, Brendan M. ;
Jagpal, Rajinder K. .
APPLIED NUMERICAL MATHEMATICS, 2018, 129 :181-191
[3]  
Abromowitz M., 1968, HDB MATH FUNCTIONS
[4]  
Al Azah M., 2017, Fast evaluation of special functions by the Modified Trapezium Rule
[5]   Computing Fresnel integrals via modified trapezium rules [J].
Alazah, Mohammad ;
Chandler-Wilde, Simon N. ;
La Porte, Scott .
NUMERISCHE MATHEMATIK, 2014, 128 (04) :635-661
[6]   A MODIFIED SINC QUADRATURE RULE FOR FUNCTIONS WITH POLES NEAR THE ARC OF INTEGRATION [J].
BIALECKI, B .
BIT, 1989, 29 (03) :464-476
[7]   ON EVALUATION OF INTEGRALS RELATED TO ERROR FUNCTION [J].
CHIARELLA, C ;
REICHEL, A .
MATHEMATICS OF COMPUTATION, 1968, 22 (101) :137-+
[8]  
Conway John B, 1978, Functions of one complex variable, V11
[9]  
Davis PJ., 1959, P S NUM APPR, P21
[10]   EFFICIENT COMPUTATION OF COMPLEX ERROR FUNCTION [J].
GAUTSCHI, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :187-&