The MIT Humanoid Robot: Design, Motion Planning, and Control For Acrobatic Behaviors

被引:64
作者
Chignoli, Matthew [1 ]
Kim, Donghyun [3 ]
Stanger-Jones, Elijah [2 ]
Kim, Sangbae [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] Univ Massachusetts, Coll Informat & Comp Sci, Amherst, MA 01003 USA
来源
PROCEEDINGS OF THE 2020 IEEE-RAS 20TH INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS 2020) | 2021年
基金
美国国家科学基金会;
关键词
OPTIMIZATION; MODEL;
D O I
10.1109/HUMANOIDS47582.2021.9555782
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Demonstrating acrobatic behavior of a humanoid robot such as flips and spinning jumps requires systematic approaches across hardware design, motion planning, and control. In this paper, we present a new humanoid robot design, an actuator-aware kino-dynamic motion planner, and a landing controller as part of a practical system design for highly dynamic motion control of the humanoid robot. To achieve the impulsive motions, we develop two new proprioceptive actuators. The actuator's torque, velocity, and power limits are reflected in our kino-dynamic motion planner by approximating the configuration-dependent reaction force limits. For the landing control, we effectively integrate model-predictive control and whole-body impulse control by connecting them in a dynamically consistent way to accomplish both the long-time horizon optimal control and high-bandwidth full-body dynamics-based feedback. With the carefully designed hardware and control framework, we successfully demonstrate dynamic behaviors such as back flips, front flips, and spinning jumps in our realistic dynamics simulation.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 26 条
  • [1] Autonomous navigation of MAVs in unknown cluttered environments
    Campos-Macias, Leobardo
    Aldana-Lopez, Rodrigo
    de la Guardia, Rafael
    Parra-Vilchis, Jose I.
    Gomez-Gutierrez, David
    [J]. JOURNAL OF FIELD ROBOTICS, 2021, 38 (02) : 307 - 326
  • [2] Dai HK, 2014, IEEE-RAS INT C HUMAN, P295, DOI 10.1109/HUMANOIDS.2014.7041375
  • [3] Robust Autonomous Navigation of a Small-Scale Quadruped Robot in Real-World Environments
    Dudzik, Thomas
    Chignoli, Matthew
    Bledt, Gerardo
    Lim, Bryan
    Miller, Adam
    Kim, Donghyun
    Kim, Sangbae
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 3664 - 3671
  • [4] Dynamics B, 2017, WHATS NEW ATLAS
  • [5] Featherstone R., 2014, Rigid body dynamics algorithms
  • [6] Optimization-based Full Body Control for the DARPA Robotics Challenge
    Feng, Siyuan
    Whitman, Eric
    Xinjilefu, X.
    Atkeson, Christopher G.
    [J]. JOURNAL OF FIELD ROBOTICS, 2015, 32 (02) : 293 - 312
  • [7] Frequency-Aware Model Predictive Control
    Grandia, Ruben
    Farshidian, Farbod
    Dosovitskiy, Alexey
    Ranftl, Rene
    Hutter, Marco
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02): : 1517 - 1524
  • [8] Griffin RJ, 2019, IEEE-RAS INT C HUMAN, P9, DOI [10.1109/Humanoids43949.2019.9035046, 10.1109/humanoids43949.2019.9035046]
  • [9] Herzog A, 2016, 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), P2703, DOI 10.1109/IROS.2016.7759420
  • [10] Design and Experimental Evaluation of a Fast Torque-Controlled Hydraulic Humanoid Robot
    Hyon, Sang-Ho
    Suewaka, Daisuke
    Torii, Yuki
    Oku, Narifumi
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2017, 22 (02) : 623 - 634