A Deep Learning Approach for Semantic Segmentation of Gonioscopic Images to Support Glaucoma Categorization

被引:7
作者
Peroni, Andrea [1 ]
Cutolo, Carlo A. [2 ]
Pinto, Luis A. [3 ]
Paviotti, Anna [4 ]
Campigotto, Mauro [4 ]
Cobb, Caroline [5 ]
Gong, Jacintha [5 ]
Patel, Sirjhun [5 ,6 ]
Tatham, Andrew [7 ,8 ]
Gillan, Stewart [5 ]
Trucco, Emanuele [1 ]
机构
[1] Univ Dundee, VAMPIRE Project, Comp, Sch Sci & Engn, Dundee, Scotland
[2] Univ Genoa, DiNOGMI, Clin Oculist, Genoa, Italy
[3] Hosp Santa Maria, Dept Ophthalmol, Lisbon, Portugal
[4] NIDEK Technol Srl, Albignasego, Italy
[5] NHS Tayside, Ninewells Hosp, Dept Ophthalmol, Dundee, Scotland
[6] Univ Dundee, Dept Ophthalmol, Dundee, Scotland
[7] NHS Lothian, Princess Alexandra Eye Pavil, Edinburgh, Midlothian, Scotland
[8] Univ Edinburgh, Ophthalmol, Edinburgh, Midlothian, Scotland
来源
MEDICAL IMAGE UNDERSTANDING AND ANALYSIS | 2020年 / 1248卷
关键词
Image segmentation; Deep learning; Gonioscopy; AUTOMATIC SEGMENTATION; RETINAL LAYER;
D O I
10.1007/978-3-030-52791-4_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a deep learning semantic segmentation algorithm for processing images acquired by a novel ophthalmic device, the NIDEK GS-1. The proposed model can sophisticate the current reference exam, called gonioscopy, for evaluating the risk of developing glaucoma, a severe eye pathology with a considerable worldwide impact in terms of costs and negative effects on affected people's quality of life, and for inferring its categorization. The target eye region of gonioscopy is the interface between the iris and the cornea, and the anatomical structures that are located there. Our approach exploits a dense U-net architecture and is the first automatic system segmenting irido-corneal interface images from the novel device. Results show promising performance, providing about 88% of mean pixel-wise classification accuracy in a 5-fold cross-validation experiment on a very limited size dataset of annotated images.
引用
收藏
页码:373 / 386
页数:14
相关论文
共 24 条
[1]   Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning [J].
Abramoff, Michael David ;
Lou, Yiyue ;
Erginay, Ali ;
Clarida, Warren ;
Amelon, Ryan ;
Folk, James C. ;
Niemeijer, Meindert .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) :5200-5206
[2]  
Alward W.L.M., 2008, Color Atlas of Gonioscopy
[3]  
[Anonymous], 2017, Retinal layers segmentation using fully convolutional network in OCT images
[4]  
[Anonymous], 1994, Graphics gems
[5]   Comparative evaluation of RetCam vs. gonioscopy images in congenital glaucoma [J].
Azad, Raj V. ;
Chandra, Parijat ;
Chandra, Anuradha ;
Gupta, Aparna ;
Gupta, Viney ;
Sihota, Ramanjit .
INDIAN JOURNAL OF OPHTHALMOLOGY, 2014, 62 (02) :163-166
[6]   Closed Angle Glaucoma Detection in RetCam Images [J].
Cheng, Jun ;
Liu, Jiang ;
Lee, Beng Hai ;
Wong, Damon Wing Kee ;
Yin, Fengshou ;
Aung, Tin ;
Baskaran, Mani ;
Shamira, Perera ;
Wong, Tien Yin .
2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, :4096-4099
[7]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[8]   The VIA Annotation Software for Images, Audio and Video [J].
Dutta, Abhishek ;
Zisserman, Andrew .
PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, :2276-2279
[9]   Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search [J].
Fang, Leyuan ;
Cunefare, David ;
Wang, Chong ;
Guymer, Robyn H. ;
Li, Shutao ;
Farsiu, Sina .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (05) :2732-2744
[10]   Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1026-1034