A Deep Learning Approach for Semantic Segmentation of Gonioscopic Images to Support Glaucoma Categorization

被引:7
作者
Peroni, Andrea [1 ]
Cutolo, Carlo A. [2 ]
Pinto, Luis A. [3 ]
Paviotti, Anna [4 ]
Campigotto, Mauro [4 ]
Cobb, Caroline [5 ]
Gong, Jacintha [5 ]
Patel, Sirjhun [5 ,6 ]
Tatham, Andrew [7 ,8 ]
Gillan, Stewart [5 ]
Trucco, Emanuele [1 ]
机构
[1] Univ Dundee, VAMPIRE Project, Comp, Sch Sci & Engn, Dundee, Scotland
[2] Univ Genoa, DiNOGMI, Clin Oculist, Genoa, Italy
[3] Hosp Santa Maria, Dept Ophthalmol, Lisbon, Portugal
[4] NIDEK Technol Srl, Albignasego, Italy
[5] NHS Tayside, Ninewells Hosp, Dept Ophthalmol, Dundee, Scotland
[6] Univ Dundee, Dept Ophthalmol, Dundee, Scotland
[7] NHS Lothian, Princess Alexandra Eye Pavil, Edinburgh, Midlothian, Scotland
[8] Univ Edinburgh, Ophthalmol, Edinburgh, Midlothian, Scotland
来源
MEDICAL IMAGE UNDERSTANDING AND ANALYSIS | 2020年 / 1248卷
关键词
Image segmentation; Deep learning; Gonioscopy; AUTOMATIC SEGMENTATION; RETINAL LAYER;
D O I
10.1007/978-3-030-52791-4_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a deep learning semantic segmentation algorithm for processing images acquired by a novel ophthalmic device, the NIDEK GS-1. The proposed model can sophisticate the current reference exam, called gonioscopy, for evaluating the risk of developing glaucoma, a severe eye pathology with a considerable worldwide impact in terms of costs and negative effects on affected people's quality of life, and for inferring its categorization. The target eye region of gonioscopy is the interface between the iris and the cornea, and the anatomical structures that are located there. Our approach exploits a dense U-net architecture and is the first automatic system segmenting irido-corneal interface images from the novel device. Results show promising performance, providing about 88% of mean pixel-wise classification accuracy in a 5-fold cross-validation experiment on a very limited size dataset of annotated images.
引用
收藏
页码:373 / 386
页数:14
相关论文
共 24 条
  • [1] Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning
    Abramoff, Michael David
    Lou, Yiyue
    Erginay, Ali
    Clarida, Warren
    Amelon, Ryan
    Folk, James C.
    Niemeijer, Meindert
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) : 5200 - 5206
  • [2] Alward W.L.M., 2008, Color Atlas of Gonioscopy
  • [3] [Anonymous], 2017, Retinal layers segmentation using fully convolutional network in OCT images
  • [4] Comparative evaluation of RetCam vs. gonioscopy images in congenital glaucoma
    Azad, Raj V.
    Chandra, Parijat
    Chandra, Anuradha
    Gupta, Aparna
    Gupta, Viney
    Sihota, Ramanjit
    [J]. INDIAN JOURNAL OF OPHTHALMOLOGY, 2014, 62 (02) : 163 - 166
  • [5] Closed Angle Glaucoma Detection in RetCam Images
    Cheng, Jun
    Liu, Jiang
    Lee, Beng Hai
    Wong, Damon Wing Kee
    Yin, Fengshou
    Aung, Tin
    Baskaran, Mani
    Shamira, Perera
    Wong, Tien Yin
    [J]. 2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 4096 - 4099
  • [6] Clinically applicable deep learning for diagnosis and referral in retinal disease
    De Fauw, Jeffrey
    Ledsam, Joseph R.
    Romera-Paredes, Bernardino
    Nikolov, Stanislav
    Tomasev, Nenad
    Blackwell, Sam
    Askham, Harry
    Glorot, Xavier
    O'Donoghue, Brendan
    Visentin, Daniel
    van den Driessche, George
    Lakshminarayanan, Balaji
    Meyer, Clemens
    Mackinder, Faith
    Bouton, Simon
    Ayoub, Kareem
    Chopra, Reena
    King, Dominic
    Karthikesalingam, Alan
    Hughes, Cian O.
    Raine, Rosalind
    Hughes, Julian
    Sim, Dawn A.
    Egan, Catherine
    Tufail, Adnan
    Montgomery, Hugh
    Hassabis, Demis
    Rees, Geraint
    Back, Trevor
    Khaw, Peng T.
    Suleyman, Mustafa
    Cornebise, Julien
    Keane, Pearse A.
    Ronneberger, Olaf
    [J]. NATURE MEDICINE, 2018, 24 (09) : 1342 - +
  • [7] The VIA Annotation Software for Images, Audio and Video
    Dutta, Abhishek
    Zisserman, Andrew
    [J]. PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 2276 - 2279
  • [8] Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search
    Fang, Leyuan
    Cunefare, David
    Wang, Chong
    Guymer, Robyn H.
    Li, Shutao
    Farsiu, Sina
    [J]. BIOMEDICAL OPTICS EXPRESS, 2017, 8 (05): : 2732 - 2744
  • [9] Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1026 - 1034
  • [10] Heckbert PS, 1994, GRAPHICS GEMS