Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: Electrophysiology, molecular biology, and receptor modeling studies
neonicotinoid;
nicotinic acetylcholine receptors;
selectivity;
voltage-clamp electrophysiology;
super agonist action;
D O I:
10.1271/bbb.69.1442
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Neonicotinoid insecticides, which act selectively on insect nicotinic acetylcholine receptors (nAChRs), are used worldwide for insect pest management. Studies that span chemistry, biochemistry, molecular biology, and electrophysiology have contributed to our current understanding of the important physicochemical and structural properties essential for neonicotinoid actions as well as key receptor residues contributing to the high affinity of neonicotinoids for insect nAChRs. Research to date suggests that electrostatic interactions and possibly hydrogen bond formation between neonicotinoids and nAChRs contribute to the selectivity of these chemicals. A rich diversity of neonicotinoid-nAChR interactions has been demonstrated using voltage-clamp electrophysiology. Computational modeling of nAChR-imidacloprid interaction has assisted in the interpretation of these results.