Using ATR-FTIR spectra and convolutional neural networks for characterizing mixed plastic waste

被引:33
作者
Jiang, Shengli [1 ]
Xu, Zhuo [2 ]
Kamran, Medhavi [2 ]
Zinchik, Stas
Paheding, Sidike [3 ]
McDonald, Armando G. [4 ]
Bar-Ziv, Ezra [2 ]
Zavala, Victor M. [1 ]
机构
[1] Univ Wisconsin Madison, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA
[2] Michigan Technol Univ, Dept Mech Engn, Houghton, MI 49931 USA
[3] Michigan Technol Univ, Dept Appl Comp, Houghton, MI 49931 USA
[4] Univ Idaho, Dept Forest Rangeland & Fire Sci, Moscow, ID 83843 USA
基金
美国国家科学基金会;
关键词
Machine learning; Plastic waste; IR spectra; Classification; Real-time; CLASSIFICATION; DISCRIMINATION; IDENTIFICATION; SYSTEM;
D O I
10.1016/j.compchemeng.2021.107547
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a convolutional neural network (CNN) framework for classifying different types of plastic ma-terials that are commonly found in mixed plastic waste (MPW) streams. The CNN framework uses exper-imental ATR-FTIR (attenuated total reflection-Fourier transform infrared spectroscopy) spectra to classify ten different plastic types. An important aspect of this type of spectral data is that it can be collected in real-time; as such, this approach provides an avenue for enabling the high-throughput characterization of MPW. The proposed CNN architecture (which we call PlasticNet) uses a Gramian angular representation of the spectra. We show that this 2-dimensional (2D) matrix representation highlights correlations between different frequencies (wavenumber) and leads to significant improvements in classification accuracy, com-pared to the direct use of spectra (a 1D vector representation). We also demonstrate that PlasticNet can reach an overall classification accuracy of over 87% and can classify certain plastics with 100% accuracy. Our framework also uses saliency maps to analyze spectral features that are most informative. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Differentiating between Natural and Modified Cellulosic Fibres Using ATR-FTIR Spectroscopy
    Geminiani, Ludovico
    Campione, Francesco Paolo
    Corti, Cristina
    Luraschi, Moira
    Motella, Sila
    Recchia, Sandro
    Rampazzi, Laura
    HERITAGE, 2022, 5 (04): : 4114 - 4139
  • [32] Degradation patterns of natural and synthetic textiles on a soil surface during summer and winter seasons studied using ATR-FTIR spectroscopy
    Ueland, Maiken
    Howes, Johanna M.
    Forbes, Shari L.
    Stuart, Barbara H.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2017, 185 : 69 - 76
  • [33] Detection of Oral Fluid Stains on Common Substrates Using SEM and ATR-FTIR Spectroscopy for Forensic Purposes
    Al-Sharji, Dalal
    Amin, Mohamed O.
    Lednev, Igor K.
    Al-Hetlani, Entesar
    ACS OMEGA, 2024, 9 (28): : 30142 - 30150
  • [34] Crack Detection in Paintings Using Convolutional Neural Networks
    Sizyakin, Roman
    Cornelis, Bruno
    Meeus, Laurens
    Dubois, Helene
    Martens, Maximiliaan
    Voronin, Viacheslav
    Pizurica, Aleksandra
    IEEE ACCESS, 2020, 8 : 74535 - 74552
  • [35] Fingerprint Liveness Detection Using Convolutional Neural Networks
    Nogueira, Rodrigo Frassetto
    Lotufo, Roberto de Alencar
    Machado, Rubens Campos
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2016, 11 (06) : 1206 - 1213
  • [36] Human Activity Recognition Using Convolutional Neural Networks
    Awad, Omer Fawzi
    Ahmed, Saadaldeen Rashid
    Shaker, Atheel Sabih
    Majeed, Duaa A.
    Hussain, Abadal-Salam T.
    Taha, Taha A.
    FORTHCOMING NETWORKS AND SUSTAINABILITY IN THE AIOT ERA, VOL 1, FONES-AIOT 2024, 2024, 1035 : 258 - 274
  • [37] Quantifying Student Attention using Convolutional Neural Networks
    Coaja, Andreea
    Rusu, Catalin, V
    ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 3, 2022, : 293 - 299
  • [38] Predicting Sleeping Quality Using Convolutional Neural Networks
    Sathish, Vidya Rohini Konanur
    Woo, Wai Lok
    Ho, Edmond S. L.
    ADVANCES IN CYBERSECURITY, CYBERCRIMES, AND SMART EMERGING TECHNOLOGIES, 2023, 4 : 175 - 184
  • [39] Detection of terbufos in cases of intoxication by means of entomotoxicological analysis using ATR-FTIR spectroscopy combined with chemometrics
    de Andrade Silva, Hellyda K. T.
    Barbosa, Taciano M.
    Santos, Marfran C. D.
    Jales, Jessica T.
    de Araujo, Antonio M. U.
    Morais, Camilo L. M.
    de Lima, Leomir A. S.
    Bicudo, Tatiana C.
    Gama, Renata A.
    Marinho, Pablo Alves
    Lima, Kassio M. G.
    ACTA TROPICA, 2023, 238
  • [40] Deep convolutional neural networks for ATR from SAR imagery
    Morgan, David A. E.
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXII, 2015, 9475