Saari's conjecture for the collinear n-body problem

被引:35
作者
Diacu, F
Perez-Chavela, E
Santoprete, M
机构
[1] Univ Victoria, Pacific Inst Math Sci, Victoria, BC V8W 3P4, Canada
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[3] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09340, DF, Mexico
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
D O I
10.1090/S0002-9947-04-03606-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1970 Don Saari conjectured that the only solutions of the Newtonian n-body problem that have constant moment of inertia are the relative equilibria. We prove this conjecture in the collinear case for any potential that involves only the mutual distances. Furthermore, in the case of homogeneous potentials, we show that the only collinear and non-zero angular momentum solutions are homographic motions with central configurations.
引用
收藏
页码:4215 / 4223
页数:9
相关论文
共 14 条
[1]  
Albouy A, 1998, INVENT MATH, V131, P151
[2]  
[Anonymous], 1992, LECT MECH
[3]  
[Anonymous], 1941, PRINCETON MATH SERIE
[4]   A remarkable periodic solution of the three-body problem in the case of equal masses [J].
Chenciner, A ;
Montgomery, R .
ANNALS OF MATHEMATICS, 2000, 152 (03) :881-901
[5]  
Diacu F., 1992, Singularities of the N-Body Problem: An Introduction to Celestial Mechanics
[6]   Near-collision dynamics for particle systems with quasihomogeneous potentials [J].
Diacu, FN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 128 (01) :58-77
[7]  
MCCORD C, SAARIS CONJECTURE 3
[8]  
MEYER KR, 1992, APPL MATH SCI, V90
[9]   SAARI CONJECTURE REVISITED [J].
PALMORE, JI .
CELESTIAL MECHANICS, 1981, 25 (01) :79-80
[10]   RELATIVE EQUILIBRIA AND THE VIRIAL THEOREM [J].
PALMORE, JI .
CELESTIAL MECHANICS, 1979, 19 (02) :167-171