Advanced microfluidic technologies for isolating extracellular vesicles

被引:21
作者
Zhang, Shaohua [1 ]
Deng, Jinqi [2 ]
Li, Jianbin
Tian, Fei [2 ]
Liu, Chao [2 ]
Fang, Luo [3 ]
Sun, Jiashu [2 ,3 ]
机构
[1] Chinese Peoples Liberat Army Gen Hosp, Med Ctr 5, Dept Breast Canc, Beijing 100071, Peoples R China
[2] Natl Ctr Nanosci & Technol, Beijing Engn Res Ctr BioNanotechnol, CAS Key Lab Standardizat & Measurement Nanotechnol, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Canc Hosp, Zhejiang Canc Hosp, Hangzhou 310022, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Extracellular vesicles; Microfluidics; Label-free isolation; Affinity-based isolation; Analysis; FIELD-FLOW FRACTIONATION; LATERAL DISPLACEMENT; PARTICLE SEPARATION; INERTIAL MIGRATION; PROSTATE-CANCER; WHOLE-BLOOD; EXOSOMES; SIZE; BIOMARKERS; LIQUID;
D O I
10.1016/j.trac.2022.116817
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Extracellular vesicles (EVs) are lipid membrane-enclosed, cell-secreted nanovesicles that have attracted significant attentions in recent years in view of their potential as non-invasive cancer diagnostic bio-markers. However, isolation and analysis of EVs from biofluids remain a challenging field due to their small size, heterogeneous marker expression, and co-existence with non-vesicular contaminants. Microfluidic techniques provide a promising approach for isolating and analyzing EVs with advantages of small sample consumption, precise fluid control, high resolution and yield, short processing time, and cost effectiveness. In this review, we summarize recent efforts in developing label-free and affinity-based microfluidic methods for isolation of EVs according to their physical and biological characteristics, and their applications in cancer diagnostics. We conclude this review with key challenges and directions for microfluidic methods for EV isolation and analysis in clinical settings.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 142 条
[1]   Microfluidics Based Magnetophoresis: A Review [J].
Alnaimat, Fadi ;
Dagher, Sawsan ;
Mathew, Bobby ;
Hilal-Alnqbi, Ali ;
Khashan, Saud .
CHEMICAL RECORD, 2018, 18 (11) :1596-1612
[2]   Inertial microfluidic physics [J].
Amini, Hamed ;
Lee, Wonhee ;
Di Carlo, Dino .
LAB ON A CHIP, 2014, 14 (15) :2739-2761
[3]   Oscillatory Viscoelastic Microfluidics for Efficient Focusing and Separation of Nanoscale Species [J].
Asghari, Mohammad ;
Cao, Xiaobao ;
Mateescu, Bogdan ;
van Leeuwen, Daniel ;
Aslan, Mahmut Kamil ;
Stavrakis, Stavros ;
deMello, Andrew J. .
ACS NANO, 2020, 14 (01) :422-433
[4]   Hydrodynamic separation of particles using pinched-flow fractionation [J].
Ashley, John F. ;
Bowman, Christopher N. ;
Davis, Robert H. .
AICHE JOURNAL, 2013, 59 (09) :3444-3457
[5]   The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number [J].
Asmolov, ES .
JOURNAL OF FLUID MECHANICS, 1999, 381 :63-87
[6]   Electrokinetically Driven Exosome Separation and Concentration Using Dielectrophoretic-Enhanced PDMS-Based Microfluidics [J].
Ayala-Mar, Sergio ;
Perez-Gonzalez, Victor H. ;
Mata-Gomez, Marco A. ;
Gallo-Villanueva, Roberto C. ;
Gonzalez-Valdez, Jose .
ANALYTICAL CHEMISTRY, 2019, 91 (23) :14975-14982
[7]   Rapid Isolation and Multiplexed Detection of Exosome Tumor Markers Via Queued Beads Combined with Quantum Dots in a Microarray [J].
Bai, Yanan ;
Lu, Yunxing ;
Wang, Kun ;
Cheng, Zule ;
Qu, Youlan ;
Qiu, Shihui ;
Zhou, Lin ;
Wu, Zhenhua ;
Liu, Huiying ;
Zhao, Jianlong ;
Mao, Hongju .
NANO-MICRO LETTERS, 2019, 11 (01)
[8]   Filtration at the microfluidic level: enrichment of nanoparticles by tunable filters [J].
Boettcher, M. ;
Schmidt, S. ;
Latz, A. ;
Jaeger, M. S. ;
Stuke, M. ;
Duschl, C. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (32)
[9]   Cross-flow microfiltration for isolation, selective capture and release of liposarcoma extracellular vesicles [J].
Casadei, Lucia ;
Choudhury, Adarsh ;
Sarchet, Patricia ;
Mohana Sundaram, Prashanth ;
Lopez, Gonzalo ;
Braggio, Danielle ;
Balakirsky, Gita ;
Pollock, Raphael ;
Prakash, Shaurya .
JOURNAL OF EXTRACELLULAR VESICLES, 2021, 10 (04)
[10]   Direct determination of lipoprotein particle sizes and concentrations by ion mobility analysis [J].
Caulfield, Michael P. ;
Li, Shuguang ;
Lee, Gloria ;
Blanche, Patricia J. ;
Salarneh, Wael A. ;
Benner, W. Henry ;
Reitz, Richard E. ;
Krauss, Ronald M. .
CLINICAL CHEMISTRY, 2008, 54 (08) :1307-1316