Counting Induced Subgraphs: An Algebraic Approach to #W[1]-Hardness

被引:4
|
作者
Doerfler, Julian [1 ]
Roth, Marc [2 ,3 ,4 ]
Schmitt, Johannes [5 ,6 ]
Wellnitz, Philip [7 ]
机构
[1] Saarland Informat Campus, Grad Sch Comp Sci, Saarbrucken, Germany
[2] Univ Oxford, Dept Comp Sci, Oxford, England
[3] Univ Oxford, Merton Coll, Oxford, England
[4] Saarland Informat Campus, Cluster Excellence MMCI, Saarbrucken, Germany
[5] Swiss Fed Inst Technol, Zurich, Switzerland
[6] Univ Bonn, Math Inst, Bonn, Germany
[7] Saarland Informat Campus, Max Planck Inst Informat, Saarbrucken, Germany
基金
欧洲研究理事会;
关键词
Counting complexity; Edge-transitive graphs; Graph homomorphisms; Induced subgraphs; Parameterized complexity; PARAMETERIZED COMPLEXITY; LOWER BOUNDS; HARD;
D O I
10.1007/s00453-021-00894-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the problem #INDSuB(Phi) of counting all induced subgraphs of size k in a graph G that satisfy the property Phi. It is shown that, given any graph property Phi that distinguishes independent sets from bicliques, #INDSuB(Phi) is hard for the class #W[1], i.e., the parameterized counting equivalent of NP. Under additional suitable density conditions on (1), satisfied e.g. by non-trivial monotone properties on bipartite graphs, we strengthen #W[1]-hardness by establishing that #INDSuB(Phi) cannot be solved in time f(k) . n degrees((k)) for any computable function f, unless the Exponential Time Hypothesis fails. Finally, we observe that our results remain true even if the input graph G is restricted to be bipartite and counting is done modulo a fixed prime.
引用
收藏
页码:379 / 404
页数:26
相关论文
共 10 条
  • [1] Counting Induced Subgraphs: An Algebraic Approach to #W[1]-Hardness
    Julian Dörfler
    Marc Roth
    Johannes Schmitt
    Philip Wellnitz
    Algorithmica, 2022, 84 : 379 - 404
  • [2] Counting Induced Subgraphs: A Topological Approach to #W[1]-hardness
    Roth, Marc
    Schmitt, Johannes
    ALGORITHMICA, 2020, 82 (08) : 2267 - 2291
  • [3] Counting Induced Subgraphs: A Topological Approach to #W[1]-hardness
    Marc Roth
    Johannes Schmitt
    Algorithmica, 2020, 82 : 2267 - 2291
  • [4] Counting Small Induced Subgraphs Satisfying Monotone Properties
    Roth, Marc
    Schmitt, Johannes
    Wellnitz, Philip
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 1356 - 1367
  • [5] COUNTING SMALL INDUCED SUBGRAPHS WITH HEREDITARY PROPERTIES
    Focke, Jacob
    Roth, Marc
    SIAM JOURNAL ON COMPUTING, 2024, 53 (02) : 189 - 220
  • [6] Counting Small Induced Subgraphs with Hereditary Properties
    Focke, Jacob
    Roth, Marc
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 1543 - 1551
  • [7] Counting Small Induced Subgraphs with Edge-Monotone Properties
    Doering, Simon
    Marx, Daniel
    Wellnitz, Philip
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1517 - 1525
  • [8] W[1]-hardness of the k-center problem parameterized by the skeleton dimension
    Blum, Johannes
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (04) : 2762 - 2781
  • [9] W[1]-hardness of the k-center problem parameterized by the skeleton dimension
    Johannes Blum
    Journal of Combinatorial Optimization, 2022, 44 : 2762 - 2781
  • [10] W[1]-Hardness of the k-Center Problem Parameterized by the Skeleton Dimension
    Blum, Johannes
    COMPUTING AND COMBINATORICS (COCOON 2020), 2020, 12273 : 210 - 221