First-principles investigation of cubic BaRuO3: A Hund's metal

被引:11
作者
Dasari, Nagamalleswararao [1 ]
Yamijala, S. R. K. C. Sharma [2 ]
Jain, Manish [3 ]
Dasgupta, T. Saha [4 ]
Moreno, Juana [5 ,6 ]
Jarrell, Mark [5 ,6 ]
Vidhyadhiraja, N. S. [1 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res, Theoret Sci Unit, Bangalore 560064, Karnataka, India
[2] Jawaharlal Nehru Ctr Adv Sci Res, Chem & Phys Mat Unit, Bangalore 560064, Karnataka, India
[3] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India
[4] SN Bose Ctr Basic Sci, Kolkata 700098, India
[5] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[6] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
GENERALIZED GRADIENT APPROXIMATION; QUANTUM MONTE-CARLO; MEAN-FIELD THEORY; ELECTRONIC-STRUCTURE; TRANSPORT-PROPERTIES; WANNIER FUNCTIONS; ANDERSON MODEL; HIGH-PRESSURE;
D O I
10.1103/PhysRevB.94.085143
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A first-principles investigation of cubic BaRuO3, by combining density functional theory with dynamical mean-field theory and a hybridization expansion continuous time quantum Monte Carlo solver, has been carried out. Nonmagnetic calculations with appropriately chosen on-site Coulomb repulsion U and Hund's exchange J for single-particle dynamics and static susceptibility show that cubic BaRuO3 is in a spin-frozen state at temperatures above the ferromagnetic transition point. A strong redshift with increasing J of the peak in the real frequency dynamical susceptibility indicates a dramatic suppression of the Fermi liquid coherence scale as compared to the bare parameters in cubic BaRuO3. The self-energy also shows clear deviation from Fermi liquid behavior that manifests in the single-particle spectrum. Such a clean separation of energy scales in this system provides scope for an incoherent spin-frozen (SF) phase that extends over a wide temperature range, to manifest in non-Fermi liquid behavior and to be the precursor for the magnetically ordered ground state.
引用
收藏
页数:9
相关论文
共 38 条
[1]   Transport properties, thermodynamic properties, and electronic structure of SrRuO3 [J].
Allen, PB ;
Berger, H ;
Chauvet, O ;
Forro, L ;
Jarlborg, T ;
Junod, A ;
Revaz, B ;
Santi, G .
PHYSICAL REVIEW B, 1996, 53 (08) :4393-4398
[2]   Role of rotational symmetry in the magnetism of a multiorbital model [J].
Antipov, A. E. ;
Krivenko, I. S. ;
Anisimov, V. I. ;
Lichtenstein, A. I. ;
Rubtsov, A. N. .
PHYSICAL REVIEW B, 2012, 86 (15)
[3]   The ALPS project release 2.0: open source software for strongly correlated systems [J].
Bauer, B. ;
Carr, L. D. ;
Evertz, H. G. ;
Feiguin, A. ;
Freire, J. ;
Fuchs, S. ;
Gamper, L. ;
Gukelberger, J. ;
Gull, E. ;
Guertler, S. ;
Hehn, A. ;
Igarashi, R. ;
Isakov, S. V. ;
Koop, D. ;
Ma, P. N. ;
Mates, P. ;
Matsuo, H. ;
Parcollet, O. ;
Pawlowski, G. ;
Picon, J. D. ;
Pollet, L. ;
Santos, E. ;
Scarola, V. W. ;
Schollwoeck, U. ;
Silva, C. ;
Surer, B. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Wall, M. L. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[4]   Non-fermi-liquid behavior and double-exchange physics in orbital-selective Mott systems [J].
Biermann, S ;
de' Medici, L ;
Georges, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)
[5]   Thermal, magnetic, and transport properties of single-crystal Sr1-xCaxRuO3 (0<=x<=1.0) [J].
Cao, G ;
McCall, S ;
Shepard, M ;
Crow, JE ;
Guertin, RP .
PHYSICAL REVIEW B, 1997, 56 (01) :321-329
[6]   Electronic correlations, magnetism, and Hund's rule coupling in the ruthenium perovskites SrRuO3 and CaRuO3 [J].
Dang, Hung T. ;
Mravlje, Jernej ;
Georges, Antoine ;
Millis, Andrew J. .
PHYSICAL REVIEW B, 2015, 91 (19)
[7]  
Dasari N., ARXIV150909163
[8]   Janus-Faced Influence of Hund's Rule Coupling in Strongly Correlated Materials [J].
de' Medici, Luca ;
Mravlje, Jernej ;
Georges, Antoine .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[9]   Electronic correlations in Hund metals [J].
Fanfarillo, L. ;
Bascones, E. .
PHYSICAL REVIEW B, 2015, 92 (07)
[10]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125