Numerical modeling of aluminum alloys fracture for automotive applications

被引:1
作者
Cavazzoni, Luca [1 ]
Miscia, Giuseppe [1 ]
Rotondella, Vincenzo [1 ]
Baldini, Andrea [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dept Engn Enzo Ferrari, Via P Vivarelli 10, I-41125 Modena, Italy
来源
XXIII ITALIAN GROUP OF FRACTURE MEETING, IGFXXIII | 2015年 / 109卷
关键词
Experimental-numerical correlation; Failure model; Aluminum alloys; FEA; Crashworthiness;
D O I
10.1016/j.proeng.2015.06.203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nowadays, finite element analysis assumes a key-role in the automotive industry. Predictivity of FE models has been strongly improved during the last years and the research on this topic involves both industrial and academic fields. The main focus of this paper is the prediction of the failure of aluminum alloys used for extruded components. Material fracture affects the capacity of absorbing energy and the crashworthiness of the structure as well. In extracting the samples directly from the components involved in the crash event, it has been possible to take into account the whole manufacturing process. The methodology has been developed to improve the correlation of the FE models as well as to answer to the industrial requirements. (C) 2015 Published by Elsevier Ltd.
引用
收藏
页码:17 / 26
页数:10
相关论文
共 50 条
[31]   Numerical Analysis of Aluminum Alloys Extrusion Through Porthole Dies [J].
Zasadzinski, J. ;
Rekas, A. ;
Libura, W. ;
Richert, J. ;
Lesniak, D. .
ADVANCES ON HOT EXTRUSION AND SIMULATION OF LIGHT ALLOYS, 2010, 424 :105-111
[32]   Anisotropic Plasticity and Fracture of Three 6000-Series Aluminum Alloys [J].
Thomesen, Susanne ;
Hopperstad, Odd Sture ;
Borvik, Tore .
METALS, 2021, 11 (04)
[33]   Acoustic emission signal processing framework to identify fracture in aluminum alloys [J].
Wisner, B. ;
Mazur, K. ;
Perumal, V ;
Baxevanakis, K. P. ;
An, L. ;
Feng, G. ;
Kontsos, A. .
ENGINEERING FRACTURE MECHANICS, 2019, 210 :367-380
[34]   The Bearing Strength and Fracture Behavior of Bolted Connections in Two Aluminum Alloys [J].
N. Tinl ;
C. C. Menzemer ;
K. Manigandan ;
T. S. Srivatsan .
Journal of Materials Engineering and Performance, 2013, 22 :3430-3438
[35]   Study of deformation and fracture of submicrocrystalline aluminum alloys by acoustic emission method [J].
Nikulin, S. A. ;
Khanzhin, V. G. ;
Dobatkin, S. V. ;
Zakharov, V. V. ;
Kopylov, V. I. ;
Rostova, T. D. ;
Rogachev, S. A. .
NANOMATERIALS BY SEVERE PLASTIC DEFORMATION IV, PTS 1 AND 2, 2008, 584-586 :870-875
[36]   The Bearing Strength and Fracture Behavior of Bolted Connections in Two Aluminum Alloys [J].
Tinl, N. ;
Menzemer, C. C. ;
Manigandan, K. ;
Srivatsan, T. S. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2013, 22 (11) :3430-3438
[37]   Characterizing the Hemming Performance of Automotive Aluminum Alloys With High-Resolution Topographic Imaging [J].
Stoudt, M. R. ;
Hubbard, J. B. ;
Carsley, J. E. ;
Hartfield-Wuensch, S. E. .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2014, 136 (03)
[38]   Diamond-like carbon coating for aluminum 390 alloy - automotive applications [J].
Malaczynski, GW ;
Hamdi, AH ;
Elmoursi, AA ;
Qiu, XH .
SURFACE & COATINGS TECHNOLOGY, 1997, 93 (2-3) :280-286
[39]   Advances in computational modeling of microstructure evolution in solidification of aluminum alloys [J].
Zhu, M. F. ;
Hong, C. P. ;
Stefanescu, D. M. ;
Chang, Y. A. .
SIMULATION OF ALUMINUM SHAPE CASTING PROCESSING: FROM ALLOY DESIGN TO MECHANICAL PROPERTIES, 2006, :13-+
[40]   Probabilistic modeling of fatigue related microstructural parameters in aluminum alloys [J].
Liao, Min .
ENGINEERING FRACTURE MECHANICS, 2009, 76 (05) :668-680