On the number of rational points of bounded height on smooth bilinear hypersurfaces in biprojective space

被引:14
作者
Robbiani, M [1 ]
机构
[1] Swiss Fed Inst Technol, CH-8092 Zurich, Switzerland
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2001年 / 63卷
关键词
D O I
10.1112/S0024610700001617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Asymptotic formulae for the number of rational points of bounded height on Rag varieties have earlier been established. In the paper these asymptotic formulae are recovered by a new method for varieties in biprojective space defined over Q that are isomorphic to the flag variety of lines in hyperplanes. The result is obtained by an application of Heath-Brown's new form of the circle method. It serves as a pointer to the investigation of rational points of bounded height on varieties in multiprojective space.
引用
收藏
页码:33 / 51
页数:19
相关论文
共 20 条
[1]   THE NUMBER OF RATIONAL-POINTS OF BOUNDED HEIGHT OF ALGEBRAIC-VARIETIES [J].
BATYREV, VV ;
MANIN, YI .
MATHEMATISCHE ANNALEN, 1990, 286 (1-3) :27-43
[2]  
Batyrev VV, 1998, J ALGEBRAIC GEOM, V7, P15
[3]  
Batyrev VV., 1995, Intern. Math. Res. Not, V12, P591, DOI [10.1155/S1073792895000365, DOI 10.1155/S1073792895000365]
[5]   BOUNDS FOR AUTOMORPHIC L-FUNCTIONS [J].
DUKE, W ;
FRIEDLANDER, J ;
IWANIEC, H .
INVENTIONES MATHEMATICAE, 1993, 112 (01) :1-8
[6]   RATIONAL-POINTS OF BOUNDED HEIGHT ON FANO VARIETIES [J].
FRANKE, J ;
MANIN, YI ;
TSCHINKEL, Y .
INVENTIONES MATHEMATICAE, 1989, 95 (02) :421-435
[7]  
Hartshorne R., 1970, LECT NOTES MATH, V156
[8]  
HeathBrown DR, 1996, J REINE ANGEW MATH, V481, P149
[9]  
HEATHBROWN DR, 1983, P LOND MATH SOC, V47, P225
[10]  
Lang S., 1983, Fundamentals of Diophantine Geometry, DOI [DOI 10.1007/978-1-4757-1810-2, 10.1007/978-1-4757-1810-2]