Development of Useful Biomaterial for Bone Tissue Engineering by Incorporating Nano-Copper-Zinc Alloy (nCuZn) in Chitosan/Gelatin/Nano-Hydroxyapatite (Ch/G/nHAp) Scaffold

被引:53
|
作者
Carlos Forero, Juan [1 ,2 ]
Roa, Eduardo [2 ]
Reyes, Juan G. [2 ]
Acevedo, Cristian [3 ,4 ]
Osses, Nelson [2 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Univ Tecn Federico Santa Maria, Programa Doctorado Biotecnol, Valparaiso 2340000, Chile
[2] Pontificia Univ Catolica Valparaiso, Inst Quim, Fac Ciencias, Valparaiso 2340000, Chile
[3] Univ Tecn Federico Santa Maria, Ctr Biotecnol, Valparaiso 2340000, Chile
[4] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso 2340000, Chile
来源
MATERIALS | 2017年 / 10卷 / 10期
关键词
scaffold; metallic nanoparticles; chitosan; gelatin; nanohydroxyapatite; bone tissue engineering; IN-VITRO; NANOCOMPOSITE SCAFFOLDS; ANTIMICROBIAL ACTIVITY; COMPOSITE SCAFFOLDS; CALCIUM-PHOSPHATE; CHITOSAN; CELL; FABRICATION; NANOTECHNOLOGY; NANOPARTICLES;
D O I
10.3390/ma10101177
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ceramic and metallic nanoparticles can improve the mechanical and biological properties of polymeric scaffolds for bone tissue engineering (BTE). In this work, nanohydroxyapatite (nHAp) and nano-copper-zinc alloy (nCuZn) were added to a chitosan/gelatin (Ch/G) scaffold in order to investigate the effects on morphological, physical, and biocompatibility properties. Scaffolds were fabricated by a freeze-drying technique using different pre-freezing temperatures. Microstructure and morphology were studied by scanning electron microscopy (SEM), glass transition (T-g) was studied using differential scanning calorimetry (DSC), cell growth was estimated by MTT assay, and biocompatibility was examined in vitro and in vivo by histochemistry analyses. Scaffolds and nanocomposite scaffolds presented interconnected pores, high porosity, and pore size appropriate for BTE. T-g of Ch/G scaffolds was diminished by nanoparticle inclusion. Mouse embryonic fibroblasts (MEFs) cells loaded in the Ch/G/nHAp/nCuZn nanocomposite scaffold showed suitable behavior, based on cell adhesion, cell growth, alkaline phosphatase (ALP) activity as a marker of osteogenic differentiation, and histological in vitro cross sections. In vivo subcutaneous implant showed granulation tissue formation and new tissue infiltration into the scaffold. The favorable microstructure, coupled with the ability to integrate nanoparticles into the scaffold by freeze-drying technique and the biocompatibility, indicates the potential of this new material for applications in BTE.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper-zinc for bone tissue engineering
    Tripathi, Anjali
    Saravanan, Sekaran
    Pattnaik, Soumitri
    Moorthi, Ambigapathi
    Partridge, Nicola C.
    Selvamurugan, Nagarajan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 50 (01) : 294 - 299
  • [2] Surface modification of PCL-gelatin-chitosan electrospun scaffold by nano-hydroxyapatite for bone tissue engineering
    Gautam, Sneh
    Purohit, Shiv Dutt
    Singh, Hemant
    Dinda, Amit Kumar
    Potdar, Pravin D.
    Sharma, Chhavi
    Chou, Chia -Fu
    Mishra, Narayan Chandra
    MATERIALS TODAY COMMUNICATIONS, 2023, 34
  • [3] In Situ Fabrication of Nano-hydroxyapatite in a Macroporous Chitosan Scaffold for Tissue Engineering
    Chen, Jing Di
    Wang, Yingjun
    Chen, Xiaofeng
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2009, 20 (11) : 1555 - 1565
  • [4] Nano-hydroxyapatite and nano-hydroxyapatite/zinc oxide scaffold for bone tissue engineering application
    Heidari, Fatemeh
    Bazargan-Lari, Reza
    Razavi, Mehdi
    Fahimipour, Farahnaz
    Vashaee, Daryoosh
    Tayebi, Lobat
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2020, 17 (06) : 2752 - 2761
  • [5] Development of gelatin/carboxymethyl chitosan/nano-hydroxyapatite composite 3D macroporous scaffold for bone tissue engineering applications
    Maji, Somnath
    Agarwal, Tarun
    Das, Joyjyoti
    Maiti, Tapas Kumar
    CARBOHYDRATE POLYMERS, 2018, 189 : 115 - 125
  • [6] Biomimetic gelatin/chitosan/polyvinyl alcohol/nano-hydroxyapatite scaffolds for bone tissue engineering
    Ma, Pengfei
    Wu, Wenjing
    Wei, Yu
    Ren, Le
    Lin, Shuxian
    Wu, Junhua
    MATERIALS & DESIGN, 2021, 207
  • [7] Resol based chitosan/nano-hydroxyapatite nanoensemble for effective bone tissue engineering
    Shakir, Mohammad
    Jolly, Reshma
    Khan, Aijaz Ahmed
    Ahmed, Syed Sayeed
    Alam, Sharique
    Rauf, Mohd. Ahmar
    Owais, Mohd.
    Farooqi, Mohd. Ahmadullah
    CARBOHYDRATE POLYMERS, 2018, 179 : 317 - 327
  • [8] A novel gelatin/carboxymethyl chitosan/nano-hydroxyapatite/β-tricalcium phosphate biomimetic nanocomposite scaffold for bone tissue engineering applications
    Sun, Qiushuo
    Yu, Lu
    Zhang, Zhuocheng
    Qian, Cheng
    Fang, Hongzhe
    Wang, Jintao
    Wu, Peipei
    Zhu, Xiaojing
    Zhang, Jian
    Zhong, Liangjun
    He, Rui
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [9] Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications
    Atak, Besir Hakan
    Buyuk, Berna
    Huysal, Merve
    Isik, Sevim
    Senel, Mehmet
    Metzger, Wolfgang
    Cetin, Guven
    CARBOHYDRATE POLYMERS, 2017, 164 : 200 - 213
  • [10] Bioactive Nano-Hydroxyapatite Doped Electrospun PVA-Chitosan Composite Nanofibers for Bone Tissue Engineering Applications
    Satpathy, Aishwarya
    Pal, Aniruddha
    Sengupta, Somoshree
    Das, Ankita
    Hasan, Md. Mahfujul
    Ratha, Itishree
    Barui, Ananya
    Bodhak, Subhadip
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2019, 99 (03) : 289 - 302