Experimental investigation of Cu(In1-x,Gax)Se2/Zn(O1-z,Sz) solar cell performance

被引:37
作者
Hultqvist, A. [1 ]
Platzer-Bjorkman, C. [1 ]
Coronel, E. [1 ]
Edoff, M. [1 ]
机构
[1] Uppsala Univ, Angstrom Solar Ctr, SE-75121 Uppsala, Sweden
关键词
Cu(In; Ga)Se-2; Buffer layer; Interface; ZnO; ZnS; Solar cell; HIGH-EFFICIENCY; GA-CONTENT; BASE-LINE;
D O I
10.1016/j.solmat.2010.09.009
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study we investigate the performance of Cu(In1-x,Ga-x)Se-2/Zn(O1-z,S-z) solar cells by changing the gallium content of the absorber layer in steps from CuInSe2 to CuGaSe2 and at each step vary the sulfur content of the Zn(O,S) buffer layer. By incorporating more or less sulfur into the Zn(O,S) buffer layer it is possible to change its morphology and band gap energy. Surprisingly, the best solar cells with Zn(O,S) buffer layers in this study are found for close to or the same Zn(O,S) buffer layer composition for all absorber Ga compositions. In comparison to their CdS references the best solar cells with Zn(O,S) buffer layers have slightly lower open circuit voltage, V-oc, lower fill factor, FF, and higher short circuit current density, J(sc), which result in comparable or slightly lower conversion efficiencies. The exception to this trend is the CuGaSe2 solar cells, where the best devices with Zn(O,S) have substantially lowered efficiency compared with the CdS reference, because of lower V-oc, FF and J(sc). X-ray photon spectroscopy and X-ray diffraction measurements show that the best Zn(O,S) buffer layers have similar properties independent of the Ga content. In addition, energy dispersive spectroscopy scans in a transmission electron microscope show evidence of lateral variations in the Zn(O,S) buffer layer composition at the absorber/buffer layer interface. Finally, a hypothesis based on the results of the buffer layer analysis is suggested in order to explain the solar cell parameters. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:497 / 503
页数:7
相关论文
共 30 条
[1]  
Allsop NA, 2007, MATER RES SOC SYMP P, V1012, P43
[2]  
Birkholz M, 2006, THIN FILM ANALYSIS BY X-RAY SCATTERING, P1
[3]  
BODEGARD M, 2001, INFLUENCE RATE PROFI, V688
[4]  
Briggs D., 1990, Practical surface analysis, V2nd
[5]  
Green M.A., 1992, Solar Cells: Operating Principles, Technology and System Applications
[6]   Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2 [J].
Hanna, G ;
Jasenek, A ;
Rau, U ;
Schock, HW .
THIN SOLID FILMS, 2001, 387 (1-2) :71-73
[7]   Effect of Ga content on defect states in CuIn1-xGaxSe2 photovoltaic devices [J].
Heath, JT ;
Cohen, JD ;
Shafarman, WN ;
Liao, DX ;
Rockett, AA .
APPLIED PHYSICS LETTERS, 2002, 80 (24) :4540-4542
[8]   Prospects of wide-gap chalcopyrites for thin film photovoltaic modules [J].
Herberholz, R ;
Nadenau, V ;
Ruhle, U ;
Koble, C ;
Schock, HW ;
Dimmler, B .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1997, 49 (1-4) :227-237
[9]   CuGaSe2 solar cells using atomic layer deposited Zn(O,S) and (Zn,Mg)O buffer layers [J].
Hultqvist, A. ;
Platzer-Bjoerkman, C. ;
Pettersson, J. ;
Toerndahl, T. ;
Edoff, M. .
THIN SOLID FILMS, 2009, 517 (07) :2305-2308
[10]   Fabrication of wide-gap Cu(ln1-xGax)Se2 thin film solar cells:: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness [J].
Ishizuka, S ;
Sakurai, K ;
Yamada, A ;
Matsubara, K ;
Fons, P ;
Iwata, K ;
Nakamura, S ;
Kimura, Y ;
Baba, T ;
Nakanishi, H ;
Kojima, T ;
Niki, S .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 87 (1-4) :541-548