Randomized Linear Algebra Approaches to Estimate the Von Neumann Entropy of Density Matrices

被引:0
作者
Kontopoulou, Eugenia-Maria [1 ]
Grama, Ananth [1 ]
Szpankowski, Wojciech [1 ]
Drineas, Petros [1 ]
机构
[1] Purdue Univ, Comp Sci, W Lafayette, IN 47907 USA
来源
2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2018年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The von Neumann entropy, named after John von Neumann, is the extension of classical entropy concepts to the field of quantum mechanics and, from a numerical perspective, can be computed simply by computing all the eigenvalues of a density matrix, an operation that could be prohibitively expensive for large-scale density matrices. We present and analyze two randomized algorithms to approximate the von Neumann entropy of density matrices: our algorithms leverage recent developments in the Randomized Numerical Linear Algebra (RandNLA) literature, such as randomized trace estimators, provable bounds for the power method, and the use of Taylor series and Chebyschev polynomials to approximate matrix functions. Both algorithms come with provable accuracy guarantees and our experimental evaluations support our theoretical findings showing considerable speedup with small accuracy loss.
引用
收藏
页码:2486 / 2490
页数:5
相关论文
共 13 条
[1]  
[Anonymous], 2008, Functions of matrices: theory and computation
[2]   Randomized Algorithms for Estimating the Trace of an Implicit Symmetric Positive Semi-Definite Matrix [J].
Avron, Haim ;
Toledo, Sivan .
JOURNAL OF THE ACM, 2011, 58 (02)
[3]   A randomized algorithm for approximating the log determinant of a symmetric positive definite matrix [J].
Boutsidis, Christos ;
Drineas, Petros ;
Kambadur, Prabhanjan ;
Kontopoulou, Eugenia-Maria ;
Zouzias, Anastasios .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 533 :95-117
[4]  
Golub G. H., 2013, Matrix Computations
[5]  
Han I, 2015, PR MACH LEARN RES, V37, P908
[6]   Sketching and Streaming Entropy via Approximation Theory [J].
Harvey, Nicholas J. A. ;
Nelson, Jelani ;
Onak, Krzysztof .
PROCEEDINGS OF THE 49TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2008, :489-498
[7]   A STOCHASTIC ESTIMATOR OF THE TRACE OF THE INFLUENCE MATRIX FOR LAPLACIAN SMOOTHING SPLINES [J].
HUTCHINSON, MF .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1990, 19 (02) :433-450
[8]  
Johnston N., 2016, QETLAB: A MATLAB toolbox for quantum entanglement
[9]  
Kontopoulou E.-M., 2018, RANDOMIZED LINEAR AL
[10]  
Musco C., 2018, SPECTRUM APPROXIMATI